Jadrové reakcie

Modely jadrových reakcií 2: Priame reakcie

Prípad rýchlejších reakcií

PRIAME REAKCIE

2.4.2020

Priame reakcie

Princíp priamej reakcie

- So zvyšujúcou sa energiou sa zmenšuje vlnová dĺžka nalietavajúcej častice.
- Pri veľkosti porovnateľnej s veľkosťou nukleónu sa stáva z nalietavajúcej častice fakticky sonda, interagujúca iba s pár nukleónmi terčového jadra – zväčša valenčnými.
- Nukleón s energiou 1 MeV má deBroglieho vlnovú dĺžku cca 4 fm. Nukleón s 20 MeV má vlnovú dĺžku 1 fm.
- Pri interakcii v takto limitovanom priestore je typický reakcia rýchla 10⁻²² sekundy.
- Do istej miery je tento typ reakcie opačný ako reakcie so vznikom zloženého jadra.
- Projektil teda interaguje iba s jedným, príp. pár, zväčša valenčnými nukleónmi.

Priame reakcie vs. Reakcie cez zložené jadro

/lastnosti priamych reakcií v porovnaná 3 reakciou cez zložené jadr:

- Rýchlosť reakcie 10⁻²² s pre priame reakcie vs. (10⁻¹⁷ - 10⁻¹⁵) s pre reakcie cez zložené jadro
 - Rôzna uhlová distribúcia produktov.

Reakcie cez zložené jadro majú rovnomernejšiu distribúciu. Častice z priamych reakcií majú smer výletu dopredu s malým maximom pri vyšších uhloch.

Uhlová závislosť od energie

Pre reakcie prenosu je najcharakteristickejšia práva výrazná uhlová závislosť. Strhávanie deuterónu pri vysokej a nízkej energii, od čoho závisí uhlové rozdelenie vyletujúceho protónu, ktoré má svoj pík v smere dopredu alebo dozadu.

Typy priamych reakcií

- Nepružný rozptyl nalietavajúceho projektilu a prenos energie na terčové jadro.
 Proces sa využíva vo veľkej miere na štúdium rotačných a vibračných stavov jadier.
- 2) Reakcie meniace zloženie jadra. Typicky ide reakcie ako
 - a) vytrhnutie nukleónu z jadra (pick-up reakcie) napr.
 (p,d) reakcie
 - b) strhnutie nukleónu z projektilu (stripping reakcie) napr. (d,n) reakcie
 - c) knock- out reakcie keď projektil vyrazí nukleón z jadra a pokračuje ďalej (reakcia vedie na tri produkty)

REAKCIE PRENOSU

2.4.2020

Priame reakcie

7

Rozptyl (jednoducho)

Predpokladajme reakciu X(d,p)Y* (t.j. interakcia deutéria s jadrom X, prenos neutrónu a vznik jadra Y v excitovanom stave a zostatkového protónu).

Pri interakcii sa prenesie okrem energie aj uhlový moment hybnosti *l* za vzniku vzbudeného jadra Y. Jadro Y sa ocitne v excitovanom stave so zmenou uhlového momentu hybnosti.

Rozptyl (jednoducho)

hybnosť deutéria sa rozkladá medzi protón a neutrón

Pre hybnosť jednotlivých častíc platí $p = \hbar k$, takže hybnosť neutrónu zachyteného jadrom je $p_n = k_n \hbar$.

Zo zákona zachovania hybnosti máme pre hybnosti deutéria, prenášaného neutrónu a vylietavajúceho protónu (viď. obr. v pravo)

$$k_n^2 = k_d^2 + k_p^2 - 2k_d k_p \cos\theta$$

Uhlový moment hybnosti prenesený na jadro je možné odhadnúť ako

$$l_n\hbar = \mathbf{r} \times \mathbf{p} = Rk_n\hbar$$

Súčasne pritom platí aj zákon zachovania parity $\pi_A \pi_{B*} = (-1)^l$ ktorý nám uskutočňuje dodatočnú selekciu stavov.

Princíp transfer reakcií

- Jeden nukleón, alebo skupina nukleónov, sa premiestni z jedného jadra do druhého v priamom jednostupňovom procese
- Reakcie prenosu možno zapísať vo forme $a + X \rightarrow Y + b$
- 1) Nerealizuje sa žiaden medzistupeň
- b = a x, Y = X + x (kde x reprezentuje prenášaný nukleón, resp. skupinu nukleónov).

Modelový opis reakcie

- Pokus o opis tejto reakcie, sa mení na problém troch telies Terčové jadro X, projektil b a prenášaný cluster x
- Využíva sa Bornova aproximácia deformovanej vlny (Distorted-wave Born approximation – DWBA). Do detailov v rámci teto prednášky nebudeme zachádzať, v daľších častiach budú načrtnutý iba základný koncept.
- Zvyčajne využíva optický model (diskutovaný neskôr), možno však využiť aj explicitné vlnové funkcie z vrstvového modelu.
- Základné predpoklady
 - Prenos nukleónov sa uskutočňuje medzi dvomi aktívnymi kanálmi
 - Vlnové funkcie optického modelu pre relatívny pohyb komponentov vstupného a výstupného kanálu sú platné vo všetkych relevantných oblastiach konfiguračného priestoru.
 - Proces prenosu je dostatočne slabý, aby stačila aproximáciaprvého rádu.

Náčrt reakcie

- jadro a v bode V1 emituje klaster x
- klaster x je zachytený terčovým jadrom X v bode V2
- Vlnové funkcie optického modelu (deformačné vlny) opisujú relatívny pohyb fragmentov (X,a) a (Y,b) pred a po interakcii

prehodené X na A a Y na B

formfaktory – funkcie súradníc, stupeň prekrytia X a Y, formfaktor projekltilu (a \rightarrow b + x) jadrový formfaktor prenosu X + x \rightarrow Y.

Bornova aproximácia

Majme reakciu X(a,b)Y (teda $a + X \rightarrow Y + b$)

V rámci Bornove aproximácie môžeme uvažovať na vstupe a na výstupe vlny pre *a* a *b* ako rovinné.

Tieto rovinné vlny možeme opísať ako superpozíciu sférických vĺn: $\psi_{in} = Ae^{ikz} = A \sum_{\ell=0}^{\infty} i^{\ell} (2\ell + 1) j_{\ell}(kr) P_{\ell}(\cos \theta)$

Kde $j_{\ell}(kr)$ sú Besselove funkcie A $P_{\ell}(\cos \theta)$ sú legandrove polynómy

$$P_0(\cos\theta) = 1$$

$$P_0(\cos\theta) = \cos\theta$$

$$P_0(\cos\theta) = \frac{1}{2} (3\cos^2\theta - 1)$$

DWBA

- Predpoklad, že rovinné vlny opisujúce nalietavajúcu a vylietavajúcu časticu sú zmenené terčovým jadrom vedie k teórii Bornovej aproximácii deformovaných vĺn.
- Predpokladá sa modifikácia vlny a fakt, že obsahuje časť rozptýlenu pružne na optickom potenciáli.
- Veľké využitie pri experimentoch opisujúcich reakcie s preneseným orbitálnym momentom hybnosti.

Spektroskopický faktor

- Ako vstupná a výstupná vlna sa dá uvažovať explicitne vlnová funkcia z vrstvového modelu.
- V praxi však nie sú stavy jadier opísané čistými stavmi shell modelu, ale prichádza k väčšiemu, či menšiemu zmiešavaniu stavov.
- Preto môže nastať situácia, že z modelu, predpokladajúceho čisté stavy (t.j. definované iba jedným stavom, resp. hladinou) získame iný účinný prierez ako je v reálnom meraní, keď daný stav je zmiešaním dvoch stavov.
- Pomer zmeraného differenciálneho a vypočítaného účinného prierezu potom nám reprezentuje tzv. spektroskopický faktor *S*.

$$\left(\frac{d\sigma}{d\Omega}\right)_{meas} = S\left(\frac{d\sigma}{d\Omega}\right)_{calc}$$

 Ten je rovný jednotke (t.j. S = 1) ak model presne vystihuje danú situáciu a obsadzuje sa čistý jasne definovaný stav. Rôzny od 1 je ak máme stav zmiešaný s kompexnejšou konfiguráciou.

Energetická bilancia

- Pri obsadzovaní finálneho stavu v prípade priamych reakcií nás zaujímajú najmä uhlová závislosť a energetická bilancia reakcie.
- Energetickú bilanciu môžeme jednoducho určiť zo zákonu zachovania energie. Zo zmeranej energie vylietavajúceho zostaku projektilu, napr. protónu v prípade (d,p) reakcií, možno určiť energiu vzbudenia zostatkového jadra.
- Absolútna hodnota účinného prierezu umožňuje určiť pravdepodobnosť obsadenia jednočasticových hladín, na ktorých je neutrón zachytený.

Uhlové rozdelenie

Pravdepodobnosť výletu zbytkového projektilu do určitého uhlu závisí od prenosu uhlového momentu hybnosti.

Uhlové rozdelenie a polarizácia protónu teda určuje spin a paritu daného stavu.

Existujú systematické

orientácie spinov)

odchýlky v závislosti od

FIG. 11: Angular distribution of the reaction ${}^{31}P(d,n){}^{32}S$, with the transfer of a proton to several states of ${}^{32}S$. The curves are results of DWBA calculations for the indicated l values [15].

K. Miura et al. Nucl. Phys. A 467, 79 (1987)

2.4.2020

Uhlové rozdelenie

FIG. 11: Angular distribution of the reaction ${}^{31}P(d,n){}^{32}S$, with the transfer of a proton to several states of ${}^{32}S$. The curves are results of DWBA calculations for the indicated l values [15].

K. Miura et al. Nucl. Phys. A 467, 79 (1987)

2.4.2020

Priame reakcie

Na obrázku je vidno na štyroch paneloch prípady pre prenos uhlového momentu hybnosti 0, 1,2 a 3.

Os X reprezentuje uhol výletu, os Y diferenciálny účinný prierez.

Jednotlivé distribúcie zodpovedajú rôznym vzbudeným stavom (s rôznou energiou)

Body s neistotami zobrazujú experimentálne hodnoty. Plné čiary, zodpovedajú DWBA výpočtom pre jednotlivé prípady (t.j. prenos energie a uhlového momentu hybnosti *l*). Práve podľa súladu výpočtu a merania sa môže identifikovať obsadený stav.

Reakcie prenosu dvoch nukleónov

- Doteraz sme mali prípad prenosu jedného nukleónu. Môže sa však prenášať dvojica identických nukleónov (n-n resp. p-p) alebo rozdielnych (n-p).
- V prípade identických nukleónov, (p,t) príp. (t,p) reakcie, je typická extrémna selektivita. V prípade párno-párnych jadier sú majoritne sú produkované 0+ stavy a prenos celkového orbitálneho momentu hybnosti je Δl = 0

Transfer reakcie pre ťažké ióny

FIG. 3. Differential cross sections for the ²⁰³Pb(¹²C, ¹¹B) reactions at 97.9 MeV. The solid curves are from DWBA calculations using Woods-Saxon potentials; the dashed curve was obtained using folded potentials.

- Prenos nukleónov nemusí prebiehať iba medzi ľahkými jadrami (napr. deutérium) a terčom. Môže prebiehať aj medzi ťažkými jadrami pri prenose nukleónu, príp. aj celého klastra.
- Časť nukleónov sa prenáša aj pri interakcii ťažkých jadier.
- Opäť je typická silná uhlová závislosť
 ²⁰⁸Pb(¹²C,¹¹B)²⁰⁹Bi

K.S. Toth et al. PRC 14, 1471 (1976)

Priame reakcie

HLBOKO NEPRUŽNÉ REAKCIE PRENOSU

Charakteristika hlb. nepr. reakcií

- V prípade ťažších projektilov môže prísť k výraznému prenosu energie a hmoty medzi interagujúcimi jadrami. Vtedy hovoríme o tzv. hlboko nepružnej reakcii (*deep inelastic collisions*)
- Tento typ reakcií je typický pri zrážke ťažkých jadier s A>40 a energiou 1
 3 MeV nad kulombovou bariérou (typicky okolo 10 MeV/u).
- Projektil a terč strávia určitý časv dotykovej konfigurácii, pričom dochádza k intenzívnej výmene hmoty a energie. Vyletujú projektilu-podobné jadrá (s časťou prenesenej hmoty) s výrazne menšou energiou ako energie projektilov.
- Pri hlboko-nepružnej reakcie sa môže preniesť aj 100 MeV energie a 50 ħ jednotiek uhlového momenty.
- Je istým prechodom medzi priamymi reakciami a reakciami vedúcimi cez zložené jadro.

Definícia dotykových reakcií

Trajektória 1 bez prenosu energie. Počiatočná kinetická energia ostáva nezmenená.

Trajektória 2 zodpovedá hlboko nepružnej zrážke, ktorá s istou pravdepodobnosťou vedie do rozptylu pod uhlom θ .

Trajektória 3 zodpovedá ekvivalentnej situácii do záporných uhlov.

- τ doba interakcie medzi
 projektilom a terčíkom
- τ_{rot} doba rotácie (perióda) dinukleárneho systému, vytvoreného pri interakcii
- τ << τ rot priama kvázielastická reakciu prenosu
- τ > τ rot reakcia s vytvorením zloženého jadra
- τ≈ τ_{rot} hlboko nepružná reakcia prenosu (deep inelastic scattering).

Priame reakcie

Príklad pre hlb. nepr. reakcie

Ar (9.48 AMeV)+²³²Th \rightarrow ${}^{A}_{19}K$ +...

Dve lokálne maximá

- 1) kvázi-pružný rozptyl 35° takmer bez straty energie
- 2) hlboko-nepružný rozptyl 15° s výraznou zmenou energie

Prehľad reakcií

Ďaleké interakcie $r > R_{int}$

Pružná interakcia, coulombovské vzbuenie

Periferálne zrážky r = R_{int}

Nepružný rozptyl, začiatok výmeny nukleónov a malé zníženie kinetickej energie

Zrážky priameho kontaktu r < R_{int}

Zrážky s hlbokým prienikom r << R_{int}

Hlboko nepružné zrážky s veľkou stratou kinetickej energie a výmenou nukleónov, pritom sa čiastočne zachovajú počiatočné hodnoty hmotnosti a nábojov.

<u>Fúzii podobné reakcie</u> pri ktorých dochádza k strate identity projektilu a terča a ich kinetická energia je úplne potlačená. <u>Kompletná fúzia</u> projektilu a terča s vytvorením zloženého jadra.

27

OPTICKÝ MODEL

2.4.2020

Priame reakcie

Čo už vieme o potenciáli jadra

Už z jadrovej spektroskopie vieme, že potenciál jadra sa môže aproximovať lineárnym harmonickým oscilátorom, pravouhlým potenciálom, v realistickejšom prípade Wood-Saxon potenciálom.

Lineárny harmonický oscilátor

$$V(r) = \left\{ \begin{array}{ll} -V_0 \Big[1 - \frac{r^2}{R^2} \Big] & \text{if } r < R \\ 0 & \text{if } r > R \end{array} \right.$$

Pravouhlý konečný potenciál

$$V(r) = \begin{cases} -V_0 & \text{if } r < R\\ 0 & \text{if } r > R, \end{cases}$$

Wood-Saxon

$$V(r) = \frac{-V_0}{1 + \exp(\frac{r-R}{a})},$$

$$V(r) \rightarrow V(r) + W(r)\mathbf{L} \cdot \mathbf{S}.$$

Základné vlastnosti potenciálu

S elementárnymi znalosťami (napr. krátkodosahovosť jadrových síl) vieme predpovedať základné vlastnosti potenciálu

1) Potenciál jadrových síl uvažuje priestorov identický s jadrom.

2) Potenciál prudko narastá na povrchu jadra a rýchlo nadobúda svoju maximálnu hodnotu

3) Vo vnútri jadra je potenciál konštantný.

Optický model v jadrových reakciách

Jednoduchý, ale funkčný potenciál na opis interakcie dvoch jadier.

OPTICKÝ POTENCIÁL

2.4.2020

Optický model v jadrových reakciách

Uhlová distribúcia

Figure 11.13 Diffraction pattern of light incident on a circular aperture circular disk gives a similar pattern. The minima have intensity of zero. The curv drawn for a wavelength equal to ten times the diameter of the aperture or disk. Ako už bolo spomenuté, v priamych reakciách máme výrazné uhlové závislosti. Tu je jedna z analogií optiky, kde sa často stretáme so systémom lokálnych maxím a miním.

2.4.2020

Princíp

Rozptyl jadier sa správa podobne ako rozptyl svetelnej vlny na otvore, pri ktorých vytvára svetlo krúžky s maximami a minimami.

Dopadajúce častice sa reprezentujú rovinnými vlnami postupujúcimi v smere osi Z ako $\psi_{in} = Ae^{ikz}$

Po zahrnutí časovej závislosti $\psi_{in} = Ae^{i(kz-\omega t)}$

Vystupujúca vlna je opísaná sférickou vlnou $\psi_{out} = A \frac{e^{ikr}}{r}$ Z toho vidíme, že hustota toku častíc $|\psi|^2$ klesá ako 1/r². Podobne ako v optike by sme našli rezonančné maximá a minimá (viď. Odvodenie z optiky venované ohybu svetla)

Optický model – základná idea

- Optický model jeden najjednoduchších modelov opisu jadrových reakcií.
- Zaviedol ho Herman Feshbach et al. (1953)
- Na interakciu jadier budeme teraz hľadieť ako na dvojtelesový systém – avšak vlastnosti interakcie samozrejme závisia od štruktúry.
- Realistický potenciál však musí okrem rozptylu jadier opísať aj ich absorbciu. To je aj základnou vlastnosťou optického modelu – schopnosť opísať absorbciu interakciách jadier.

Podobnosť s optikou

- Prepožičiava si ideu z optiky a prechodu vlny cez materiál, kde prichádza k rozptylu a pohlteniu svetla pri interakcii s materiálom.
- Podobne aj interagujúce jadrá majú istú pravdepodobnosť rozptylu, a istú pravdepodobnosť pohltenia.
- Optika zavádza index lomu v podobe $\tilde{n} = n(1 + i\kappa)$
- Práve komplexná časť je zodpovedná za absorbciu vlny
- Zjednodušene si to možno predstaviť tak, že vlnová funkcia obsahuje komplexný člen (*e^{ikx}*). Pri súčine dvoch komplexných čísel sa nam ich komplexná časť neguje.

Zahmlená kryštáľová gula

- Optický model, sa občas berie aj ako model zahmlenej kryštálovej gule
- Časť svetla nám prechádza a rozptyľuje sa, reprezentuje neinteragujúce častice a rozptýlené častice
- Časť svetla sa nám absorbuje, reprezentuje zachytené častice
- Podobne ako máme komplexný index lomu, zavádzame aj komplexný potenciál

$$U(r) = V(r) + iW(r)$$

- Obe funkcie sú vztiahnuté na radiálnu časť opisu interakcie
- V(r) je pritom zodpovedná za rozptyl jadier a môže byť (ako neskôr ukážeme podobná jadrovému potenciálu z vrstvového modelu
- Imaginárna časť iW(r) opisuje absorbciu a závisí od energie interakcie

Čo získame z potenciálu

Z kvantovej mechaniky vieme, že pre časticu v jadrovom potenciáli vlnová funkcia klesá ako $\exp -\sqrt{\frac{2m}{\hbar^2}(V_0 - E)}dx$

Pre rozptýlenú vlnu máme e^{ikr}/r pričom pre vlnové číslo k môžeme napísať

$$\begin{aligned} k &= \sqrt{\frac{2m(E+V_0+iW_0)}{\hbar^2}} = \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \sqrt{1 + \frac{2miW_0}{\hbar^2}} \frac{\hbar^2}{2m(E+V_0)} \\ &= \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \sqrt{1 + \frac{iW_0}{(E+V_0)}} \end{aligned}$$

Čo získame z potenciálu

Ak je W_0 malé v porovnaní s $(E + V_0)$ môžeme využiť taylorov rozvoj a dostaneme pre k:

$$\begin{aligned} k &= \sqrt{\frac{2m(E+V_0)}{\hbar^2}} \left(1 + \frac{1}{2} \frac{iW_0}{(E+V_0)} \right) = \sqrt{\frac{2m(E+V_0)}{\hbar^2}} + \frac{1}{2} \frac{iW_0\sqrt{(E+V_0)}}{(E+V_0)} \sqrt{\frac{2m}{\hbar^2}} \\ &= \sqrt{\frac{2m(E+V_0)}{\hbar^2}} + \frac{iW_0}{2} \sqrt{\frac{2m}{\hbar^2(E+V_0)}} \end{aligned}$$

Aplikácia na vlnovú funkciu

Pre vlnové číslo teda máme

$$k \approx \sqrt{\frac{2m(E+V_0)}{\hbar^2} + \frac{iW_0}{2}} \sqrt{\frac{2m}{\hbar^2(E+V_0)}}$$

Tým aj pre pôvodnú vlnu e^{ikr}/r môžeme napísať

Pre funkciu pravdepodobnosti dostaneme, že je úmerná členu

Ak si vezmeme ako formu strednej voľnej dráhy e-1

$$d = \frac{1}{2k_i} = \frac{1}{W_0} \sqrt{\frac{\hbar^2 (E + V_0)}{2m}}$$

$$k = k_r + ik_i$$

$$e^{ikr} = e^{ik_r r} \cdot e^{-k_i r} / r$$

$$\propto e^{-2k_ir}$$

2.4.2020

Optický model v jadrových reakciách

Opis reálnej časti

Reálnu časť potenciálu už poznáme – opis je vhodné realizovať pomocou Wood-Saxon potenciálu.

$$V(r) = V f_n(r) = \frac{-V_0}{1 + e^{(r-R)/a}}$$

Pričom R = $1.2A^{1/3}$ (pri difúznom povrchu jadier možno uvažovať aj úmernosť 1.4).

Jednotlivé konštanty sa pritom upresnia podľa vhodného súladu s experimentálnymi dátami.

Prechod k imaginárnej časti

V prípade nižších energií dokážu absorbovať energiu nalietavajúcej častice iba valenčné nukleóny. Pevne viazané nukleóny v centre jadra nie sú v tomto procese efektívne a sú efektívne blokované.

Ako vhodná podoba imaginárnej časti potenciálu sa volí derivácia reálneho potenciálu $W(r) \approx dV(r)/dr$

Táto funkcia dosahuje maximum práve na povrchu kde sa najviac mení funkcia V(r), a je nulová v strede, kde je funkcia V(r) konštantá.

Inak povedané – pri nízkych exc. energiách sa môžu valenčné nukleóny presunúť na neobsadené hladiny a absorbovať tým energiu. Hlboko v jadre je však energia väzby príliš veľká a pevnejšia viazané nukleóny hlbšie v potenciáli ostávajú bez zmeny (Pauliho blok).

Opis imaginárnej časti

Na pripomenutie

$$V(r) = V f_n(r) = \frac{-V_0}{1 + e^{(r-R)/a}}$$

Samotnú imaginárnu časť potenciálu potom možno zapísať ako:

$$W(r) = Wg(r) = -a \frac{df_n(r)}{dr} = \frac{\exp\left(\frac{r-R}{a}\right)}{\left[1 + \exp\left(\frac{r-R}{a}\right)\right]^2}$$

Faktor *a* sa dopĺňa kvôli normalizácii na 1.

Podoba potenciálu

Reálna časť potenciálu

Imaginárna časť potenciálu

Prípad vyšších energií

Pri vyšších energiách však samozrejme môže prenikať projektil aj hbšie do jadra a interakcia prebieha aj so silnejšie viazanými nukleónmi v strede. Tým sa funkcia W(r), môže postupne ponášať na funkciu V(r). (teda viac kopíruje reálnu časť potenciálu a skutočnú podobu jadra, keďže do "hry" vstupujú postupne všetky nukleóny)

Experimentálne potvrdenie – rozptyl alfa častíc na jadre Niklu.

A. Budzanowski et al. Phys. Rev. C17, 951 (1978)

Optický model v jadrových reakciách

Prípad vyšších energií

Experimentálne potvrdenie – rozptyl alfa častíc na jadre Niklu.

Na osi X je relatívna vzdialenosť od stredu terčového jadra.

Horný panel zobrazuje prípad nízkej energie interakcie. Na strednom paneli sa energia zvyšuje a zvyšuje sa aj pravdepodobnosť rozptylu v centrálnej časti. Dolný panel prakticky kopíruje distribúciu hmoty v jadre.

A. Budzanowski et al. Phys. Rev. C17, 951 (1978)

Optický model v jadrových reakciách

Koulombovský člen

Pri snahe o reálny popis potenciálu je nevyhnutné brať aj ďalšie členy, ako napríklad koulombovskú interakciu

$$V_{c}(r) = \frac{1}{4\pi\varepsilon_{0}} \frac{Z_{i}Z_{r}e^{2}}{2R_{c}} \left(3 - \frac{r^{2}}{R_{c}^{2}}\right) \text{ pre } r < R$$
$$V_{c}(r) = \frac{1}{4\pi\varepsilon_{0}} \frac{Z_{i}Z_{r}e^{2}}{2R_{c}} \text{ pre } r \geq R$$

Spin-orbitálny člen

Nukleóny majú spin ½ a podobne ako pri opise potenciálu pri opise jedrovej štruktúry aj potenciál pre opis interakcie jadier má spin-orbitálny člen.

Tento vplyv je experimentálne overiteľný pri porovnaní rozptylu jadier polarizovaného a nepolarizovaného zväzku.

$$V_{SO}(r) = \left(\frac{\eta}{m_{\pi}c}\right)^2 V_{SO} \frac{1}{r} \frac{df_{SO}(r)}{dr} L \cdot \sigma$$

Najdôležitejší je opäť na povrchu jadier a vo vnútri zaniká. Kvantitatívne je typická veľkosť cca 4 MeV.

Celkový optický potenciál

Celkový potenciál $U(r) = V_c(r) + Vf_v(r) + iWf_w(r) + V_{SO}(r)$

Upozornenie. Optický potenciál je vhodný na opis reakcií, keď sa opisuje interakcia dvoch jadier ako celku. Neopisuje exaktne štrukturálne efekty jadier.

Berie iba priemenrné hodnoty.

Je veľkým – ale funkčným – zjednodušením.

THE END

2.4.2020