Štiepenie jadier

Upresnenie a doplnenia k PhD JF

Štiepenie jadier

Rozpad na dva príp. tri fragmenty

Štiepna bariéra

Aktivačná energia (pri spontánnom štiepení sa vysktuje tunelovanie)

Uvoľnená energia

Štiepenie jadier

Produkujú sa neutrónovo bohaté jadrá exotické jadrá Problém rádioaktivity jadrového odpadu Možnosť využitia štiepnych zdrojov na vytvorenie rádioaktívnych zväzkov.

Odhad štiepnej bariéry

A. Mamdouh et al. NPA679 (2001), 337

Experimental and calculated fission barriers $\mathsf{B}_{\mathsf{fis}}$ for Po and U

Full symbols – experimental data

Lines - calculations

Spontánne štiepenie (T_{1/2,sf}~10⁻⁶-10²⁵s)

Pravdepodobnosť SF transuránov

Parciálne polčasy štiepenia vykazujú lokálne maximá pre oblasti uzatvorených vrstiev – sférických aj deformovaných.

N = 152 a N = 162 sú uzavreté deformované vrstvy neutrónov.

N=184 je očakávaná sférická uzavretá vrstva.

Izotopy Rf vykazujú pritom odlišný trend ako izotopy No. Pravdepodobne pre ne začína dominovať vplv uzavretej vrstvy N=162.

TKE

Celková kinetická energia fragmentov (TKE) sa riadi tzv. Viola Seaborg systematikou, ktorá vykazuje lineárny trend medzi TKE a štiepiteľnosťou jadra definovanou ako $Z^2/_{A^{1/3}}$.

S.A Kreek et al. PRC50 (1994) 2288

29. 5. 2019

TKE v oblasti transuránov

Yu. Oganessian, J. Phys. G. 34, R165 (2007)

Viola-Seaborg pre transurány vykazuje naďalej podobný lineárny trend, ale objavuje sa niekoľko výnimiek.

Ide zväčša o izotopy, ktoré sa štiepia symetricky na dva fragmenty z oblasti dvojito magického jadra ¹³²Sn.

Symetria rozloženia hmoty vo fragmentoch, je jednou z podstatných vlastností spontánneho štiepenia jadier.

Očakávaná distribúcia fragmentov

Macroscopic (LDM) part only

Ak by sme predpokladali iba kvapkový model, očakávali by sme symetrickú distribúciu fragmentov. Nie je dôvod, aby bol jeden z fragmentov väčší.

Symmetric Mass Split

29. 5. 2019

Vplyv vrstvovej korekcie

29.5.2019

V dôsledku existencie vrstvových korekcií, začínajú fragmenty pri vytváraní "cítiť" stabilizačný efekt uzavretých vrstiev a následne prichádza k nesymetrickému prerozdeleniu jadrovej hmoty počas procesu štiepenia.

Aký fragment sa vytvorí?

FIG. 1. Neutron-shell corrections calculated as a function of deformation (β) and neutron number. The contours are plotted at 1 MeV intervals with the black regions (representing the strongest shell corrections) containing all values lower than -4 MeV and the inner white region (representing the weakest shell corrections) containing all values greater than +2 MeV. The contours do not include any pairing or liquid-drop terms. The letters refer to particular shell regions as described in the text.

Transurány majú typicky 92 a viac protónov. Polovica je cca 50.. Očakávame preto jeden fragment z okolia Z = 50(Sn).

Neutrónov je cca 130 – 170. Polovica je cca 65 – 85. Očakávame preto jeden fragment z okolia N = 82

Teda jeden fragment by mal byť z okolia jadra s 50 protónmi a 82 neutrónmi (¹³²Sn).

29. 5. 2019

Asymetrické štiepenie

Figure 1.5: (a) Average masses of the heavy and light fragment groups as a function of the mass of the fissioning nucleus. (b) Example of the double-humped structure in the asymmetric spontaneous fission of 256 Fm and 252 Cf [Fly72].

29. 5. 2019

Štiepna bariéra vs. Kvapkový model

Fissioning Shape Isomers (T_{1/2,f}~ns-ms)

- Discovery: 1962 Fissioning shape isomers (V.M. Polikanov et al.)
- Populate states in the second well (typical E*=2-3 MeV)
- Lower and thinner $B_{fis,external} \Rightarrow \text{ shorter } T_{1/2}$
- e.g. ^{242g}Am T_{1/2}=141 y, but ^{242m}Am T_{1/2}=14 ms!

Beta delayed fission (βDF, T_{1/2,f}=T_{1/2,b})

Pravdepodobnosť betaDF

Pravdepodobnosť definovaná ako pomer štiepení po beta premene a samotného počtu beta premien $p_{\beta DF} = \frac{N_{\beta DF}}{N_{\beta}}$

$$\mathbf{P_{ECDF}} = \frac{N_{ECDF}}{N_{EC}} = \frac{{}_{0}^{Q_{EC}} (\mathbf{Q}_{EC} - \mathbf{E})^{2} \times \mathbf{S}_{\beta}(\mathbf{E}) \frac{\Gamma_{f}(\mathbf{E}, \mathbf{B}_{f})}{\Gamma_{tot}(\mathbf{E})} d\mathbf{E}}{{}_{0} (\mathbf{Q}_{EC} - \mathbf{E})^{2} \times \mathbf{S}_{\beta}(\mathbf{E}) d\mathbf{E}} \qquad (\mathbf{Q}_{EC} - \mathbf{E})^{2} - \mathbf{P} \text{hase factor for EC decay}}{{}_{0} (\mathbf{Q}_{EC} - \mathbf{E})^{2} \times \mathbf{S}_{\beta}(\mathbf{E}) d\mathbf{E}}$$

$$\Gamma_{f} = \frac{1}{2\pi\rho} \left\{ 1 + \exp\left[\frac{2\pi(B_{f}-E)}{h\omega_{f}}\right] \right\}^{-1} - \text{inverted parabola approximation}$$

Takže pre pravdepodobnosť oneskoreného štiepenia bude kritické, aby boli obsadzované stavy po beta premene čo najbližšie k samotnej výške štiepnej bariéry.

29. 5. 2019

Podmienky pre štúdium βDF

Fission Barriers: W.D. Myers, W. Swiatecki Phys. Rev. C60 (1999) 014606 Masses: P. Moller et al. At. Data and Nucl. Data tablse 59 (1995) 185

Pravdepodobnosť betaDF exp.

Proces oneskoreného štiepenia je známy pre niekoľko jadier, najmä v oblasti neutrónovo-deficitných izotopov v okolí Z = 92

$$p_{\beta DF} = \frac{N_{\beta DF}}{N_{\beta}}$$

Pravdepodobnosť betaDF exp.

Proces oneskoreného štiepenia je známy pre niekoľko jadier, najmä v oblasti neutrónovo-deficitných izotopov v okolí Z = 92

$$p_{\beta DF} = \frac{N_{\beta DF}}{N_{\beta}}$$

29.5.2019

Parciálne počasy pre betaDF

Parciálne polčasy nasledujú exponenciálny trend (resp. lineárny v log. mierke)

Odhad výšky štiepnej bariéry

- Detailné výsledky pre výpočty podľa FRLDM (Finite range liquid-drop model) – P. Moller et al. *Heavy-element fission barriers* Phys. Rev. C 79, 064303 (2009)
- Jednoduchá parametrizácia pre kvapkový model (selfconsisten Thomas-Fermi model) – W.D. Myers and W.J. Swiatecki, *Thomas-Fermi fission barriers*, Phys. Rev. C 60, 014606 (1999)

Pozor, tento model poskytuje iba makroskopicku bariéru. Tu je potrebné ešte navýšiť o mikroskopickú korekciu [P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, *Nuclear Ground-State Masses and Deformations* At. Data Nucl. Data Tables **59**, 185-381 (1995)] http://t2.lanl.gov/nis/data/astro/molnix96/massd.html

Štiepna bariéra podľa T-F modelu

 $B_{TF}(N,Z) = S(N,Z)F(X) MeV$

kde *S* je úmerné povrchovej energii $S = A^{2/3}(1 - kI^2)$

kde
$$I \equiv \frac{(N-Z)}{A}$$
 a k je koeficient povrchovej symetrie
 $k = 1.9 + (Z - 80)/75$

Parameter štiepiteľnosti X je v tejto parametrizácii $X = \frac{Z^2}{A(1-kI^2)}$

Funkcia
$$F(X)$$
má pre $X_1 \le X \le X_0$ podobu
 $F(X) = 0.000199749(X - X_0)^3$

a pre $30 \le X \le X_1$ je aproximovaná ako $F(X) = 0.595553 - 0.124136(X - X_1)$

pričom $X_1 = 34.15 \text{ a} X_0 = 45.5428$

Celková bariéra je $B = BTF - E_{mic}$

pričom *E_{mic}* je (zvyčajne) záporná stabilizačná korekcia ^{29. 5. 2019} Štiepenie jadier

1984 "Cluster decay"

- Existuje jadrový typ rozpadu jadra medzi emitovaním alfa častice a štiepením jadra?
- Pri výpočte Q hodnôt sa zistilo že pre niektoré jadrá je povolená emisia ¹⁴C Identifikované ako prvé pre jadro 223Ra ktoré sa s pravdepodobnosťou 10⁻⁷ rozpadá na ²⁰⁹Pb.
- Neskôr bolo identifikovaných cca 25 prípadov s emisiou jadier až po ³⁴Si
- Parciálny polčas rozpadu je 10¹⁴ 10²⁷ rokov

1994: Electromagnetic fission

NUCLEAR PHYSICS A

Nuclear Physics A 614 (1997) 400-414

Fission barriers from electromagnetic fission of $430 \cdot A$ MeV radioactive ion beams *

A. Grewe^a, S. Andriamonje^c, C. Böckstiegel^a, T. Brohm^a,
H.-G. Clerc^a, S. Czajkowski^c, E. Hanelt^a, A. Heinz^b, M. G. Itkis^d,
M. de Jong^a, A. Junghans^a, M. S. Pravikoff^c, K.-H. Schmidt^b,
W. Schwab^b, S. Steinhäuser^a, K. Sümmerer^b, B. Voss^b
^a Institut für Kernphysik, Schloßgartenstr. 9, 64289 Darmstadt, Germany
^b Gesellschaft für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany
^c CEN Bordeaux-Gradignan, Gradignan, France
^d JINR, Dubna, Russia

Received 19 August 1996; revised 29 October 1996

Abstract

For isotopically separated secondary beams of neutron-deficient nuclei delivered by the SIS-FRS facility at the GSI, electromagnetic fission-in-flight induced at $430 \cdot A$ MeV in a secondary lead target was observed. Electromagnetic fission cross sections were measured for ^{232,233,234}U, ²³²Pa, ^{220,221,222}Th, ^{218,...,222}Ac and ^{215,217,218,219}Ra. By using a simple analysis, fission barriers were derived from the electromagnetic fission cross sections. For the U- and Pa-isotopes, these barriers agree with those measured previously by other methods. The new barriers for Th- and Ac-isotopes are smaller than predicted theoretically.

PACS: 24.75.+; 24.30.Cz; 25.70.De; 25.85.-w; 25.60.-t; 25.60.Dz; 27.80+w; 27.90+b Keywords: Nuclear reaction; Radioactive beams; Electromagnetic excitation; Fission ^{232,233,234} U(γ ,f), ²³²Pa(γ ,f), ^{220,221,222} Th(γ ,f), ^{218,...,222} Ac(γ ,f) and ^{215,217,218,219} Ra(γ ,f); Measured σ_{em}^{f} ; Deduced fission barriers

Pri fragmentácii jadier je možné vytvoriť z fragmentov sekundárny zväzok. Následne tento zväzok možeme nechať interagovať s inými ťažkými jadrami (napr. jadrá olova). Pri následnej interakcii prichádza k tzv. kulombovskému vzbudeniu, ktoré sekundárne ióny excituje. V prípade akcitácie nad štiepnu bariéru prichádza k ich štiepeniu.

Jedna z možností ako študovať výšky štiepnych barier jadier, ktoré sa neštiepia.

Experimental information on low-energy fission

Faktor potlačenia štiepenia

1			4	Bh	Bh 260 ?	Bh 261	Bh 262		Bh 264	Bh 265	Bh 266	Bh 267	
			107		7	11.8 ms	22 ms 83 ms		~440 ms	0.94 s	1.7 s	17 s	
		3			α	α 10.40, 10.10 10.03	a 10.37 a 10.06 10.24 9.91, 9.74		α 9.48, 9.62	α 9.24	α 9.08	α 8.83	
			Sg	Sg 258 2.6 ms	Sg 259 0.32 s	Sg 260 3.6 ms	Sg 261 0.23 s	Sg 262	Sg 263	Sg 264 68 ms	Sg 265	Sg 266 21 s	
1		106			α 9.593 sf?	9.77, 9.72	a 9.56. 9.52		a 9.25 a 9.06	st	48.82 8.90 48.70 97 87 97 87	sf α 8.77, 8.52 α→ 0	
i.	1	Db	Db 256	Db 257	Db 258	Db 259	Db 260	Db 261	Db 262	Db 263			Db 266
1	105		τ.6 s α 9.014, 9.120	0.76 s 1.50 s	1.9 s 4.2 s α 9.106 9.109.9.089	0.51 \$	1.5 S α 9.04, 9.07	1.8 5	a 8.45, 8.63	sf			22 10
			9.075, 8.891 ¢	a 9 363 8,967 a + m a - g st?	102 157, 222	α 9.47 9	9.12 sf?	a 8.93 st	8.53 sf	α 8.36 \$		·	st (c?, a?)
Rf	Rf 253 48 µs	Rf 254 23 µs	Rf 255 1.68 s	Rf 256 6.67 ms	Rf 257	Rf 258 14.7 ms	Rf 259 3.0 s	Rf 260 21 ms	Rf 261	Rf 262 47 ms? 2.1 s	Rf 263		Rf 265 ~106 s
			α 8.716, 8.678 α → g. sf.		a 8.778 8.738 8.283_		a 8.17. 8 87				sf		
	sf	1+252	143, 204	9.70 L r 265	1968 d	1 5 257	sf 1 c 259	at	a 8.28 78 52	Lr 261	al 1 r 262	-	sf
	0.36 s	1.42 s 0.64 s	18 s.	2.53 s 31.1 s	27 s	0.65 s	3.9 s	6.3 s	3 m	39 m	3.6 h		
	a 9.018, 8.974	α 8.722 α 8.794 α ≠ m α = g st st	α 8.480, 8.385 r y 209, 306	a 8.457. a 8.365 8.420 8.420. h/ € a → g a → m. g	8.390, 8.465 y. 163,190,141 125	α 8.86, 8.80	α 8.595, 8.621 8.565, 8.654	a 8,445	α 8.03	sf s7	6		
No 250	No 251	No 252	No 253	No 254	No 255	No 256	No 257	No 258	No 259	NO 260		No 262	
4,2 Ja	1.02 S 0.00 S	2.5 5	1.02 11	a 8.10	a 8.096, 7.910 7.745	2.013	α 8.222, 8.323.	1.12.1113	a 7.520, 7.551	100 113		0.0 113	
ut 122	125 a - g - m st	1 8.42, 8.37 d	α 8.004 γ 222, 280, 151	H a=9	ε γ 192, 358, e ⁻	α 8.448, 8.402 sf	ε γ 77, 124, e	st	7.581 ε	st		sf	
Md 249 9s 21.7s	Md 250 52 s	Md 251 4.27 m	Md 252 2.3 m	Md 253 12 m	Md 254	Md 255 27 m	Md 256	Md 257 5.52 h	Md 258	Md 259 95 m	Md 260 31.8 d	100	
a 8 022	6 α.7.75, 7.82 γ.152	ε α 7.550		ε α.7.100		ε α 7.327, 7.274 γ 453, 405, 231	ε α 7.206, 7,142 γ 634, 644, 682	ε α 7.074, 7.014	a 6.718 6.763 7.369			160	
60. 200. Em 249	βsf	y 294, 243	Em 251	y 353	Em 252	170 Em 254	692 Em 255	y 371, 325	5 g	sf Em 258	sf Em 250		
36 s	2.6 m	1.8 s 30 m	5.30 h	25.39 h	3.0 d	3.24 h	20.1 h	70 ns 2.63 h	100.5 d	0.38 ms	1.5 s		
.87, 7.83	α 7.520 γ (~45) e	iy st	α 6.883, 6.782 γ 881, 453 e ⁻	α 7.039, 6.998 sf γ (96), e	ε α 6.943, 6.673 γ 272, (145)	sf γ (99, 43), e ⁻ σ ~76	sf γ (81, 58), e ⁻ σ 26, σ _f 3300	ly 862 st 231 x 0.917 st 7~45	γ 242,180, e ⁻ σ _{abs} 6100 σ _f 3000	sl	sf		
Es 247	Es 248	Es 249	Es 250	Es 251	Es 252	Es 253	Es 254	Es 255	Es 256	Es 257		-	
	e a 6.879, 6.907	ε α 6.776, 6.716	6 000 000 000	6	α 6.631, 6.562 ε	α 6.633, 6.591 sf	β ⁺ 0.5 α.6.429 α.6.384	β α 6.301, 6.267	Ø- 135	st			
.323, 7.275. 9	βsf α→g	γ 380, 813 375, α → g	1032 349 829	α 6.492, 6.462 γ 178, (153)	y 785, 139 9	γ (42, 389), e σ 180 + 5.8	α ~1.3 σ 28 σ ₁ 1800 σ, 1800	st,γ(33) σ ~55	m βsf β-	γ 26, 46			
Cf 246 35.7 h	Cf 247 3.11 h	Cf 248 333.5 d	Cf 249 351 a	Cf 250 13.08 a	Cf 251 898 a	Cf 252 2.645 a	Cf 253 17.81 d	Cf 254 60.5 d	Cf 255 1.4 h	Cf 256 12.3 m			
750, 6.708	ε α 6.296, 6.238 γ (294, 448	α 6.258, 6.217 sf x (43), e	α 5.812, 5.758 sf v 388, 333α	α 6.030, 5.989 sf v (43). e	a 5.679, 5.849 6.012 y 177, 227	α 6.118, 6.076 sf y (43), e ⁻	α 5.980 γ (46), e	sf α 5,833, 4,791 y (43), θ ⁻					
2,00	418 1 0	1 (40), 0	a 500 a 1700	a 2000 a. 110	a 2000 a. 4500	a 20 a 32	g 18 g 1300	- 4 S	8-	ef			

Napriek plynulej zmene parciálnych polčasov, vykazujú vetviace pomery nerovnomerný trend pre jednotlivé izotopy.

29. 5. 2019

Faktor potlačenia štiepenia

Fig. 3. Logarithms of SF hindrance factors (HF) for odd-neutron and odd-proton nuclides. Lower limit values are indicated by arrows. An open bar indicates that the HF was calculated relative to only one e-e neighbor. A filled or hacked bar indicates that the HF was calculated relative to two e-e neighbors. [From Ref. [11].]

Aj pri štiepení sleduje potlačenie parciálnych polčasov rozpadov jadier. Pre nepárno-párne izotopy sú parciálne polčasy štiepení potlačené aj o niekoľko rádov.

Tento faktor potlačenia sa zvyčajne odhaduje ako pomer polčasu pre nepárno-párny izotop a priemeru polčasov pre susedné párno-párne izotopy

$$HF = \frac{T_{1/2,o-e}}{avg(T_{1/2,e-e})}$$

Jednotlivé prísupy sa môžu lišiť. Taktiež ostáva otvorenou otázkou, či nepárno-nepárne izotopy majú násobne vyšší faktor potlačenia ako nepárno-párne.

D.C. Hoffman and M.R. Lane, Radiochim. Acta 70/71, 135 (1994) 29. 5. 2019 Štiepenie jadier