Jadrová fyzika

Rádioaktívne zväzky

Stabilné zväzky vs. RIB

- Zväzkov s využitím elementárnych častíc je veľmi málo. V podstate iba protóny, mióny, elektróny, neutróny, fotóny. Je snaha vytvoriť koncept intenzívnych neutrínových zväzkov cez kolimované zväzky betanestabilných izotopov.
- V prírode máme menej ako 300 stabilných izotopov, takže zväzkov so stabilnými jadrami je iba pár 100.
- Naproti tomu rádioaktívnych zväzkov môže byť pár 1000. Ich využitie však čelí problému s bezpečnosťou a intenzitou.

Fragmenty sú v oboch prípadoch separované a formované do rádioaktívneho zväzku.

V prípade ISOL metódy sa využíva dodatočné urýchlenie zväzku (dvojurýchľovačové zariadenia)

PRIELETOVÁ SEPARÁCIA RÁDIOAKTÍVNYCH ZVÄZKOV

Produkcia jadier fragmentáciou

Po urýchlení nalietavajú na energie ~ 100 GeV/ u ťažké jadrá na terčík na ktorom prichádza k fragmentácii. Fragmenty sú následne selektované systeémom elmag polí a nasmerované na jednotlivé experimenty.

Existujúce zariadenia

Hlavné experimenty s prieletovými separátormi RA zväzkov.

Facility	Location	Driver	Primary energy	Typical intensity	Fragment separator
GANIL	Caen, France	Two separated sector cyclotrons	Up to $100 \mathrm{MeV}\mathrm{u}^{-1}$	³⁶ S 10 ¹³ pps ⁴⁸ Ca 2×10 ¹² pps	SISSI + ALPHA
GSI	Darmstadt, Germany	LINAC + synchrotron	Up to 2 GeV u ⁻¹	10 ¹⁰ ppspill	FRS
NSCL/MSU	East Lansing, MI, USA	Two coupled superconducting cyclotrons	Up to 200 MeV u^{-1}	⁴⁰ Ar 5×10 ¹¹ pps	A1900
RARF RIKEN	Tokyo, Japan	Ring cyclotron	Up to $100 \text{MeV} \text{u}^{-1}$	⁴⁰ Ar 5×10 ¹¹ pps	RIPS

Y. Blumenfeld et al., Phys. Scripta T152, 014023 (2013)

Viacero nových experimentov v štádiu budovania alebo ugradu.

Produkcia jadier fragmentáciou

Energia 10 – 100 MeV/u - možnosť študovať izoméry s polčasom výrazne kratším – cca 100 ns.

10. 6. 2019

Spôsob identifikácie

Identifikácia a získanie polčasov rozpadu pre veľmi neutrónovo bohaté jadrá. Vyšrafovaná časť reprezentuje čakacie body r-procesu.

Nishimura et al., Phys. Rev. Lett. 106, 025502 (2011)

Príklad merania:Produkcia jadra ²²C

Produkcia – relativistický zväzok 40Ar (63 MeV/u) interaguje s produkčným terčom Ta (333 mg/cm2) a vytvára sa sekundárny zväzok ^{19,20,22}C

Pozn. ²¹C má dobu života menej ako 30 ns čo je vidno aj "prázdnou" pozíciou v grafe. V prípade 22C je to 6,2 ms, čo je dostatočne dlho na jeho separáciu.

Produkcia: 1.8×10^4 pre ¹⁹C,

 1.8×10^{3} pre ²⁰C

10 pre ²²C

FIG. 1 (color). (a) Two-dimensional plot of Z versus A/Q in front of the reaction target. (b) Z projection of Fig. 1(a). The solid line indicates a Gaussian fit to the Z = 6 peak, yielding a $\Delta Z = 0.24$ in FWHM. (c) A/Q-projection spectrum for the Z = 6 particles. The solid line indicates a Gaussian fit to the ²²C peak, yielding a $\Delta A = 0.12$ in FWHM.

RIBs

Nepovinná informatívna časť ^{8/10}

Veľkost ²²C

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

PRL 104, 062701 (2010)

Ş

Observation of a Large Reaction Cross Section in the Drip-Line Nucleus²²**C**

K. Tanaka,¹ T. Yamaguchi,² T. Suzuki,² T. Ohtsubo,³ M. Fukuda,⁴ D. Nishimura,⁴ M. Takechi,^{4,1} K. Ogata,⁵ A. Ozawa,⁶ T. Izumikawa,⁷ T. Aiba,³ N. Aoi,¹ H. Baba,¹ Y. Hashizume,⁶ K. Inafuku,⁸ N. Iwasa,⁸ K. Kobayashi,² M. Komuro,² Y. Kondo,⁹ T. Kubo,¹ M. Kurokawa,¹ T. Matsuyama,³ S. Michimasa,^{1,*} T. Motobayashi,¹ T. Nakabayashi,⁹ S. Nakajima,² T. Nakamura,⁹ H. Sakurai,¹ R. Shinoda,² M. Shinohara,⁹ H. Suzuki,^{10,6} E. Takeshita,^{1,†} S. Takeuchi,¹ Y. Togano,¹¹ K. Yamada,¹ T. Yasuno,⁶ and M. Yoshitake² ¹RIKEN Nishina Center, Saitama 351-0198, Japan ²Department of Physics, Saitama University, Saitama 338-8570, Japan ³Department of Physics, Niigata University, Niigata 950-2181, Japan ⁴Department of Physics, Osaka University, Osaka 560-0043, Japan ⁵Department of Physics, Kyushu University, Fukuoka 812-8581, Japan ⁶Institute of Physics, University of Tsukuba, Ibaraki 305-8571, Japan ⁷Radio-Isotope Center, Niigata University, Niigata 951-8510, Japan ⁸Department of Physics, Tohoku University, Miyagi 980-8578, Japan ⁹Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan ¹⁰Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan ¹¹Department of Physics, Rikkyo University, Tokyo 171-8501, Japan (Received 28 October 2009; published 8 February 2010)

Reaction cross sections (σ_R) for ¹⁹C, ²⁰C and the drip-line nucleus ²²C on a liquid hydrogen target have been measured at around 40A MeV by a transmission method. A large enhancement of σ_R for ²²C compared to those for neighboring C isotopes was observed. Using a finite-range Glauber calculation under an optical-limit approximation the rms matter radius of ²²C was deduced to be 5.4 ± 0.9 fm. It does not follow the systematic behavior of radii in carbon isotopes with $N \leq 14$, suggesting a neutron halo. It was found by an analysis based on a few-body Glauber calculation that the two-valence neutrons in ²²C preferentially occupy the $1s_{1/2}$ orbital.

10.6.2019

RIBs

Nepovinná informatívna časť 9/10

Polomer 22C

Polomer atómu by mala byť cca 1.2 x A^{1/3} R ~ 1.2 × 22^{1/3} \approx 3.36 fm

Podľa nameraných účinných prierezov by mal byť polomer 5.4 ± 0.9 fm.

Predstava je, že ide o "core" + 2 slabo viazané neutróny. Odobretie jedneho neutrónu však vedie k rozpadu jadra. (viď polčas ²¹C) Ide o tzv. <u>Borromean j</u>adrá.

FIG. 1: ²²C is now the heaviest observed Borromean nucleus. Borromean nuclei are named after the rings from the 15th century crest of the Borromeo family from northern Italy. The rings are connected in such a way that the cutting of one ring results in the separation of all three. (Left) Marble representation of the Borromean rings, used as an emblem of Lorenzo de Medici in San Pancrazio, Florence [13]. (Right) Schematic view of ²²C showing the two halo neutrons around a core. Removing any one element makes the entire structure unstable. (Illustration:Alan Stonebraker)

Storage ring

GSI Darmstadt Experimental Storage Ring

Umožňuje spomalenie a akumuláciu produkovaných iónov

Elektróny sa injektujú do dráhy iónov v driftovej trubici elektróny, rýchlosť ktorých je nastavená na optimálnu rýchlosť iónov. Driftová trubica sa nachádza v koaxiálnom magnetickom poli, ktoré veľmi efektívne zrovná smer pohybu elektrónov. Vplyv tohto mag. poľa na energetické ióny je výrazne menší.

Elektróny pomalšie ióny dobiehajú a pridajú im malý impulz v smere osi trubice. Rýchlejšie iónu sa narážajú na elektróny a sú pribrzďované v smere pohybu elektrónov.

10. 6. 2019

Cooling of ion beam with electrons

Základnou ideou stochastického chladenia zväzku je zisťovanie pohybu častice a jeho korekcia impulzným spôsobom (kicker). Následne sa korekcia aplikuje na celý "bunch" iónov a nie na jednotlivé ióny

Stochasticke chladenie elektrónmi je formou termodynamického chladenia, ked sa redukuje entropia systému. Podstata je v nulovaní rôznej fázy iónov v prostredí. 10. 6. 2019 RIBs 13

Projekt FAIR

ISOL METÓDY TVORBY RÁDIOAKTÍVNYCH ZVÄZKOV

Y. Blumenfeld et al., Phys. Scripta T152, 014023 (2013)

RIB - Production reactions at ISOLDE

- Spallation
- Fragmentation
- Proton-induced Fission

Lighter targets are also used – the choice dependent specific nucleus we want to reach

Cs

10. 6. 2019

Produkcia jadier ISOL technikou

Zdroj: ISOLDE web page

GPS M/ΔM = 2400 - 15000 HRS M/ΔM = 30000 (teoreticky) Výhoda: Rozlíšenie hmotností na úrovni 5 MeV Nevýhoda: čas extrakcie na úrovni 100 ms 10. 6. 2019 18/10

Production mechanisms: Fragmentation and Fission

Large number of different isotopes is simultaneously produced!Need some method to select a required nucleus!

Use mass separator to select mass A - ISOLDE Use laser Ion Source to select Z - RILIS Thus the combination of RILIS&ISOLDE provide a unique A and Z identification (sometimes, isomer separation!)

ISOLDE – pure RIB

ISOLDE – pure RIB

Využitie laseru

Zdroj: ISOLDE web page

Excitácia atómu pomocou laseru.

10. 6. 2019

Spôsob využitia

S. Rothe et al. Nature Communications 4, 1835 (2013)

Spektroskopia s využitím laseru

Celkový uhlový moment hybnosti atómu je

F_{atom}=I_{nuclear}+J_{electron} Takže ak poznáme rozloženie elektrónových orbitalov, dokážeme ionizovať atómy postupnou excitáciou elektrónu.

párno-párne jadrá

Continuum

 $\lambda_2 = 600.186 \text{ nm}$

λ₁ = 283.**3**05 nm

 $\lambda_3 = 51 / nm \& 578 nm$

nepárno-párne jadrá

V dôsledku nenulového spinu jadra pricháadza k hyperjemnému štiepeniu elektrónových hladín.

Následne ak nastavíme dostatočne úzko šírku frekvencií laseru, môžeme skenovať jednotlivé rozštiepené hladiny.

V prípade existencie izomérneho stavu jadra, je štiepenie hladín v atómovom odlišné odlišné pre základný stav jadra a vzbudený stav jadra.

separácia izomérov jadrá

Selekcia izomérnych stavov

Ako sme spomenuli – izomérne stavy majú rozdielnu konfiguráciu atómového obalu a teda v principe je možné rozlíšiť

Príklad realizácie

Pre mnohé prvky nemáme k dispozícii ionizačné schémy (rozloženie elektrónových hladín) a ionizačné potenciály

nature

ARTICLE

Received 21 Aug 2012 | Accepted 27 Mar 2013 | Published 14 May 2013

001: 10.1038/ncomms2819 0PEN

Measurement of the first ionization potential of astatine by laser ionization spectroscopy

S. Rothe^{1,2}, A.N. Andreyev^{3,4,5,6}, S. Antalic⁷, A. Borschevsky^{8,9}, L. Capponi^{4,5}, T.E. Cocolios¹, H. De Witte¹⁰,
E. Eliav¹¹, D.V. Fedorov¹², V.N. Fedosseev¹, D.A. Fink^{1,13}, S. Fritzsche^{14,15,†}, L. Ghys^{10,16}, M. Huyse¹⁰, N. Imai^{1,17},
U. Kaldor¹¹, Yuri Kudryavtsev¹⁰, U. Köster¹⁸, J.F.W. Lane^{4,5}, J. Lassen¹⁹, V. Liberati^{4,5}, K.M. Lynch^{1,20}, B.A. Marsh¹,
K. Nishio⁶, D. Pauwels¹⁶, V. Pershina¹⁴, L. Popescu¹⁶, T.J. Procter²⁰, D. Radulov¹⁰, S. Raeder^{2,19}, M.M. Rajabali¹⁰,
E. Rapisarda¹⁰, R.E. Rossel², K. Sandhu^{4,5}, M.D. Seliverstov^{1,4,5,12,10}, A.M. Sjödin¹, P. Van den Bergh¹⁰,
P. Van Duppen¹⁰, M. Venhart²¹, Y. Wakabayashi⁶ & K.D.A. Wendt²

Experimenty vo svete

Hlavné experimenty s urýchlenými RA zväzkami.

Facility	Location	Driver	Post-accelerator	Final energy	Main beams available
REX-ISOLDE	CERN, Geneva	PS Booster, 1.4 GeV protons	REX LINAC	0.3 <i>A</i> –3 <i>A</i> MeV	Large variety including fission fragments
SPIRAL	Caen, France	GANIL coupled cyclotrons	CIME cyclotron	2.7A-25A	He. Ne, Ar, Kr, N,O. F
TRIUMF/ISAC	Vancouver, Canada	500 MeV proton cyclotron	ISAC I and II RFQ + SC LINAC	0.2–11A MeV	Large variety including fission fragments

Y. Blumenfeld et al., Phys. Scripta T152, 014023 (2013)

Pripravované projekty SPES v INFN Legnaro (Taliansko) SPIRAL2 v GANIL (Caen, Francúzsko) ISOL@MYRRHA (Belgicko - subkritický reaktor stimulovaný 600 MeV protónovým urýchľovačom)

Výhody pre malé zariadenia

Technológia je využiteľná aj pre malé zariadenia. Princípom ostáva fragmentácia ťažkých jadier (zvyčajne urán), nie je však potrebná vysoká energia zväzku (za cenu menšieho výťažku RA izotopov)

Príklady ďalších experimentov

- Napr. IGISOL v Jyväskylä kde 50 MeV protónový zväzok interaguje s ²³⁸U (príp. ²³²Th). Extrahované fragmenty sa zberajúv héliu (200 – 500mb)a transportujú na jednotlivé experimenty merajúce vlastnosti týchto jadier (napr. laser. spect. alebo hmotnostné pasce).
- Podobné projekty CARIBU v ANL (využívajúci ²⁵²Cf), ALTO v IPN Orsay (50 MeV e⁻ urýchľovač), EXCYT v LNS Catania atď.

REAKCIE PRENOSU A RIBS

Produkcia jadier transfer reakciou

 Prenos nukleónov medzi terčovým jadrom a projektilom.

 Prenáša sa jeden alebo viac protónov, neutrónov príp. aj jadro uhlíka

Relevantná oblasť pri použití terča ²⁰⁸Pb

Aké informácie môžeme získať?

Excitačné energie obsadzovaných stavov Uhlovú distribúciu produktov reakcie Relatívne pravdepodobnosti obsadzovania stavov (⇒ spektroskopický faktor) Gamma kvantá emitované pri de-excitácii

(d,p) reakcie

- Silný nástroj v kombinácii s in-beam spektroskopiou. Nukleón môže obsadzovať hladinu ležiacu niekoľko MeV nad základným stavom. Z emitovaných gama kvánt máme nezávislú informácia o populovaných hladinách.
- Protón môže okrem informácie o energii a uhlovej distribúcii reakcie poskytnúť aj možnosť rozlíšenia žiadúcich reakcií od pozadia.

REX-ISOLDE and **HI-ISOLDE** at **CERN**

- ISOLDE-CERN (in operation since 1967):
 - beams of ~ 600 radioactive isotopes available at 60 keV
- Radioactive ion beam Experiment (REX) at ISOLDE (from 2002 on): -an efficient concept for post-accelerating radioactive isotopes up to 3 MeV/u,

•HIgh-Energy at ISOLDE (HIE-ISOLDE), >2010 - further post-acceleration up to ~5-10 MeVu (above the Coulomb barrier)

In-beam of RIB

- **Instrumentation** (e.g. MINIBALL,CD, position-sensitive Si barrel ...)
- Coulex reactions (e.g.Hg,Rn)
- Transfer reactions
- Fusion reactions
- Stellar reaction rates
- Reactions with isomeric beams
- Recoil spectrometer

10/10

Nepovinná informatívna časť

10. 6. 2019

RIBs