Jadrová spektroskopia

Rádioaktívne rozpady

Parciálne polčasy

- V prípade ak sa jadro môže rozpadávať viacerými procesmi, je celková rozpadová konštanta súčtom parciálnych rozpadových konštánt pre jednotlivé proces. Teda platí $\lambda = \sum_i \lambda_i$.
- Keďže stredná doba života je definovaná ako $\tau = \frac{1}{\lambda}$ a polčas rozpadu je čas, za ktorý klesne početnosť jadier na polovicu platí pre polčas rozpadu $T_{1/2} = \frac{\ln 2}{\lambda}$.
- Preto ak poznáme parciálne polčasy rozpadu jednotlivých procesov je polčas rozpadu izotopu $\frac{1}{T_{1/2}} = \sum_{i} \frac{1}{T_{1/2,i}}$
- Vetviaci pomer pre jednotlivé typy rozpadov je pritom $b_i = \frac{\lambda_i}{\lambda}$ a parciálny polčas je $T_{1/2,i} = \frac{\ln 2}{\lambda_i} = \frac{\ln 2}{\lambda b_i} = \frac{T_{1/2}}{b_i}$.

ALFA ROZPAD

27. 3. 2020

Rádioaktívne rozpady

3/10

Q hodnota alfa rozpadu

$$\begin{array}{l} \mathsf{Q}_{\alpha a} = \mathsf{E}_{\mathsf{r}} + \mathsf{E}_{\alpha} \approx \mathsf{E}_{\alpha} \times \mathsf{m}(\mathsf{Z},\mathsf{A})/\mathsf{m}(\mathsf{Z}\text{-}2,\mathsf{A}\text{-}4) \\ \mathsf{Q}_{\alpha \mathsf{n}} = \mathsf{E}_{\mathsf{r}} + \mathsf{E}_{\alpha} + \Delta \mathsf{E}_{\alpha} \\ \Delta \mathsf{E}_{\alpha} = (65.3\mathsf{Z}^{7/5} - 80 \; \mathsf{Z}^{2/5}) \; eV \\ \text{(screening correction)} \end{array}$$

Energeticky povolené prakticky len pre oblasť A>150 (s výnimkou malej oblasti v okoli Z = 50 a N =50 ovplyvnenej silnými vrstvovými korekciami)

Využitie Q_{α} pre hmotnosť

Úloha: Vypočítajte hmotnostný úbytok ¹⁹⁴Rn ak viete, že hmotnostný úbytok ¹⁹⁰Po je -5.315 MeV

27. 3. 2020

Odhadnutie hmotnosti

Extrémne neutrónovo deficitný izotop ¹⁹⁴Rn sa rozpadáva alfa rozpadom na ¹⁹⁰Po, pričom podľa predchádzajúceho predpokladáme priamo prechod medzi základnými stavmi oboch jadier. Hmotnostný úbytok ¹⁹⁰Po je - 5.315 MeV. ¹⁹⁴Rn sa rozpadá na¹⁹⁰Po α rozpadom s enegiou E_{α} = 7.70 MeV.

 $Q_{\alpha a} = E_r + E_{\alpha} \approx E_{\alpha} \times m(Z,A)/m(Z-2,A-4)$ = 7.700 x 194/190 = 7.862 MeV

 $\begin{array}{l} \mathsf{Q}_{\alpha} = \Delta \mathsf{M}(^{194}\mathsf{Rn}) - \Delta \mathsf{M}(^{190}\mathsf{Po}) - \Delta \mathsf{M}(\alpha) \text{ takže} \\ \Delta \mathsf{M}(^{194}\mathsf{Rn}) = \Delta \mathsf{M}(^{190}\mathsf{Po}) + \Delta \mathsf{M}(\alpha) + \mathsf{Q}\alpha = \\ -5.315 + 2.425 + 7.862 = 4.972 \text{ MeV} \end{array}$

$Q_{\alpha} a T_{1/2}$

Idea penetrácie cez bariéru s pravdepodobnosťou $\lambda_{\alpha} = \omega P$ (v prípade ²³⁸U je $\omega \approx 10^{38}$).

Rádioaktívne

$$P \approx e^{-G} = \exp\left\{-2\frac{\sqrt{2m_{\alpha}}}{\hbar}\int_{R}^{b}\sqrt{[V(r) - E_{\alpha}]}dr\right\}$$

Geiger – Nutallov zákon

27.3.2020

Type equation here.Kvantovo-mechanická teória α rozpadu vytvorená v r. 1928 (G. Gamow a R.W. Gurney a G. Condon)

$$V(r) = \frac{2(Z-2)e^2}{4\pi\varepsilon_0 r}$$

$$\downarrow$$

$$\log T = a(Z) + \frac{b(Z)}{\sqrt{Q_\alpha}}$$

7/10

27.3.2020

Rádioaktívne rozpady

8/10

Využitie pri identifikácii prvkov

- Význačný trend medzi Q hodnotou a polčasom rozpadu alfa premeny je nezriedka využívaný ako argument pri identifikácii nových prvkov, resp. izotopov.
- Tento vzťah platí najmä pre prípad párno-párnych jadier, kde prebieha rozpad medzi dvomi základnými stavmi.
- V prípade nepárno párnych jadier sa situácia komplikuje v dôsledku možného potlačenia prechodu medzi stavmi s rôznou konfiguráciou (viď neskôr).

Figure 4. Half-lives T_{α} as a function of the α -decay energy Q_a for nuclei with even atomic numbers $Z \ge 100$ (indicated in the figure). The solid lines represent calculations using the Viola-Seaborg formula (given in the figure). The black symbols denote even-even isotopes, the open symbols - even-odd.

Yu. Ts. Oganessian, Nucl. Phys. A787, 343c (2007) Rádioaktívne rozpady 9/10

Pravdepodobnosť α premeny

V blízkosti uzavretých vrstiev prudko narastá Q_{α} hodnota (viď obr). Následne sa zvyšuje sa pravdepodobnosť a polčas α premeny (na uzavretej vrstve je minimum a jadrá rozpadávajúce sa na uzatvorenú vrstvu (napr. so 126 neutrónmi) majú extrémne krátke polčasy rozpadov (viď nasledujúce slidy).

27. 3. 2020

Uzavreté vrstvy Z = 82 a N = 126

212 33 s	Ac 213	Ac 214 8.2 s	Ac 215 0.17 s	Ac 216 0.44 ms	Ac 217	Ac 218	Ac 219 11.8 µs	Ac 220 26 ms	Ac 221 52 ms	Ac 222	Ac 223 2.10 m	Ac 224 2.9 h	Ac 225	Ac 2 29
	a 7.36	α 7.215; 7.081 • • 139; 244	α 7.600; 7.211 ε γ (396)	α 9.029; 9.105. γ 83; 854; 771	460; 468; 382 = 10.54 x 9.55	α 9.205 9	a 8.664	α 7.85; 7.61; 7.68 γ 134	α 7.65; 7.44; 7.38	a 6.81; 6.75; 6.89; a 7.009; 7.00; m 6.963 h; 7:4 g	α 6.647; 6.662; 6.564; ε γ (99; 191; 84)	ε α 6.142; 6.060; 6.214 γ 216; 132	n 5.830; 5.793; 5.732; C 14 y 100; (150; 188; 63); e	β ⁻ 0.9; 1 ε; α.5.34 γ 230; 1 254; 18ε
211 3 s	Ra 212	Ra 213	Ra 214 2.46 s	Ra 15	Ra 216	Ra 217 1.6 µs	Ra 218 25.6 µs	Ra 219 10 ms	Ra 220 23 ms	Ra 221 28 s	Ra 222 38 s	Ra 223 11.43 d	Ra 224 3.66 d	Ra 2 14.8
. 6.788); e [−]	α 6.899 € ? γ (635)	h 546; = 8.624; 1063; 5.731, 161;e ⁻ 5.521 α 8.466; c;e 110; 8.357 215e ⁻	α 7.137; 6.505 €; g γ (642)	α 8.700; 7 . θ γ 834; 5	1 688; 476; 344 = 9.551; 11.028 = 9.349	a 8.99	α 8.39 9	a. 7.679; 7.989 y 316; 214; 592	α 7.46 γ 465	α 6.613; 6.761; 6.668 γ 149; 93; 174 C 14	α 6.559; 6.237 γ 324; (329; 473) C 14	α 5.7162; 5.6067 γ 269; 154; 324 C 14; σ 130; σ ₁ <0.7	α 5.6854; 5.4486 γ 241; C 14 σ 12.0	β ⁺ 0.3; 0. γ 40 e ⁻
210 8 m	Fr 211 3.10 m	Fr 212 20.0 m	Fr 213	7 214	Fr 215 0.09 μs	Fr 216 0.70 μs	Fr 217 16 μs	Fr 218 22 ms 1.0 ms	Fr 219 21 ms	Fr 220 27.4 s	Fr 221 4.9 m	Fr 222 14.2 m	Fr 223 21.8 m	Fr 2 3.3
817	α 6.535 ⁶ γ 540; 918; 281	4 α 6.262 6.384 6.408; 6.340 γ 1274; 227; 1185	a 6.775 ¢	a 8.477; 425; 8.547	α 9.36	α 9.01 9	a 8.315	α 7.615; 7.680; 7.656 α 7.867; m; g 7.576 ly g	α 7.312 γ (352; 517)	α 6.68; 6.63: 6.58 β γ 45; 106; 162	α 6.341; 6.126 γ 218; (101; 411) C 14	β 1.8 γ 206; 211; 242 α ?	β 1.1 α 5.34 γ 50; 80; 235	β 2.6; 2 γ 216; 11 837; 134
209 5 m	Rn 210 2.4 h	Rn 211 14.6 h	7 . 212 24 m	5 n 213 19.5 ms	Rn 214	Rn 215 2.3 μs	Rn 216 45 μs	Rn 217 0.54 ms	Rn 218 35 ms	Rn 219 3.96 s	Rn 220 55.6 s	Rn 221 25 m	Rn 222 3.825 d	Rn 2 23.2
139 2.6 746; 19	α 6.040 ε γ 458; (571; 649; 73)	ε α 5.783; 5.851 γ 674; 1363; 678; g	a 6.264 Y	α 8.088- 252 γ 540	iγ 696; =1 302 = 10.63 α 10.46 = 9.037	α 8.67 9	α 8.05 9	α 7.740	α 7.133 γ (609)	α 6.819; 6.553; 6.425 γ 271; 402	α 6.288 γ (550) σ <0.2	β 0.8; 1.1 α 6.037; 5.788; 5.778 ¥186; 150	α 5.48948 γ (510) σ 0.74	β ⁺⁻ γ 593; 41 636; 655
208 33 h	At 209 5.4 h	At 210 8.3 h	1 211 7.22 h	A1 212	At 213 0.11 μs	At 214 0.76µs 0.27µs 0.56µs	At 215 0.1 ms	At 216 ? 0.3 ms	At 217 32.3 ms	At 218 ~2 s	At 219 0.9 m	At 220 3.71 m	At 221 2.3 m	At 2 54
1 960;	α 5.647 γ 545; 782; 790	ε; α 5.524; 5.442; 5.361 γ 1181; 245; 1483	ε α 5.867 γ (887 9	a 7.84; # 7.68; 7.90 7.62 1.63	a. 9.08	a.8.782 ;m = 2.8.877 Y Y	α 8.026 γ (405)	α 7.488 α 7.694; π ₁ γ (115; γ 103 418)	α 7.069 β ⁻ γ (259; 334; 595)	α 6.694; 6.653 β γ	α 6.27 β	β ⁻ α 5.493 γ 241; 293; 422	β-	β-
207	Po 208 2.898 a	Po 209 102 a) 210 138.38 d	Po 211 25.2 s 0.516 s	Po 212	Po 213 4.2 μs	Po 214 164 μs	Po 215 1.78 ms	Po 216 0.15 s	Po 217 1.53 s	Po 218 3.05 m	Po 219 >300 ns	Po 220 >300 ns	
: 6 = 5.110 7 992: 743: 912_;g	α 5.1152 ^ε γ (292; 571) 9	α 4.881 € γ (895; 261; 263)	$\begin{array}{l} \alpha \; 5.30438 \\ \gamma \; (803); \; \sigma < 0.0005 \\ + < 0.030; \\ \sigma_{0,\alpha} \; 0.002; \; \sigma_{\rm f} < 0.1 \end{array}$	a 7.275; 8.883 y 570; a 7.460 1064	α 11.65 by 728. y 2615; 406; 583 223 by ά10.22 α.8.785	α 8.376 γ (779)	α 7.6869 γ (800; 298)	α 7.3862 β ⁻ γ (439)	α 6.7783 γ (805)	α 6.543 β	α 6.0024 β ⁻ γ	β-? α?	β" ?	
206 24 d	Bi 207 31.55 a	Bi 208 3.68 · 10 ⁵ a	Bi 209 100	Bi 210 3.0-10 ⁶ a 5.013 d	Bi 211 2.17 m	Bi 212	Bi 213 45.59 m	Bi 214 19.9 m	Bi 215 36.9 s 7.7 m	Bi 216 3.6 m 2.17 m	Bi 217 98.5 s	Bi 218 33 s		
881; 516; 37	ε β* γ 570; 1064; 1770	¢ y 2615	σ 0.011 + 0.023 σ _{n. α} <3E-7	a 4.946; p ⁻ 1.2 4.908_ a 4.648; y 266; 4.686 304_ y (305; a 0.054 266)	$\begin{array}{c} \alpha \ 6.6229; \ 6.2788\\ \beta^{-}\\ \gamma \ 351\\ \alpha \rightarrow g; \ \beta^{-} \rightarrow g \end{array}$	E.20 a 5.051; β ⁻¹ .7 E.090, βa-16.22: γ727 βa-16.22: γ728 mp. H1 β	β ⁻ 1.4 α 5.87 γ 440; (293; 1100)	β 1.5; 3.3 α 5.450; 5.513 γ 609; 1764; 1120 βα 9.079	Iv-414 β ⁻ β ⁻ 746; 167 β ⁻ γ 294; γ.306; 271; 256; 419	β ⁺ γ 550; 419: 223	β γ265; 254; 890; 436	β 3.5; 3.7 γ510; 386; 426; 263	136	
205 10 ⁷ a	Pb 206 24.1	Pb 207 22.1	Pb 208 52.4	Pb 209 3.253 h	Pb 210 22.3 a	Pb 211 36.1 m	Pb 212 10.64 h	Pb 213 10.2 m	Pb 214 26.8 m					
	# 0.027	or 0.61	σ 0.00023 σ _{n.α} <8E-6	β= 0.6 no γ	β 0.02; 0.06 γ 47; e ⁻ ; g α 3.72 σ <0.5	β 1.4 γ 405; 832; 427	β ⁺ 0.3; 0.6 γ239; 300 9	β-	β 0.7; 1.0 γ 352; 295; 242		134			
204 78 a	TI 205 70.48	TI 206 3.7 m 4.20 m	TI 207	TI 208 3.053 m	TI 209 2.16 m	TI 210 1.30 m	TI 211 >300 ns	TI 212 >300 ns						
*	or 0.11	ly 686; 453; 216; 256; р1.5 1021	hy 1000; μ° 1.4 351 γ(898)	β 1.8; 2.4 γ 2615; 583; 511; 860; 277	β ⁺ 1.8 γ 1567; 465; 117	β 1.9; 2.3 γ 800; 298 βn	β ⁻ ?	β ⁻ ?	132					
203 59 d	Hg 204 6.87	Hg 205 5.2 m	Hg 206 8.15 m	Hg 207 2.9 m	Hg 208 ~42 m	Hg 209 35 s	Hg 210 >300 ns							
	or 0.4	β [~] 1.5 γ204	β 1.5 γ 305; 650	β ⁻ 1.8 γ351: 997; 1637 m; g	β ⁻ γ474	β ⁻ γ 324	B ⁻ 7							

27.3.2020

Rádioaktívne rozpady

Orientácia v tabuľke izotopov

Uzavretá vrstva

Podobný efekt relatívne rýchlejších alfa rozpadov vidíme aj v okolí uzatvorenej vrstvy s 82 neutrónmi. V tomto prípade spôsobí, že v oblasti s dominujúcim módom beta premeny sa vyskytnú izotopy rozpadávajúce sa alfa rozpadom.

	Lu 174.967	Lu 150 39 µs 46 ms	LU 151 16 µs 80.6 ms	Lu 152 0.7 s	Lu 153 ? 0.9 s	Lu 154 7 1.12 s	Lu 155 2.7ms 136 ms 70 ms	Lu 156 0.20 s 0.49 s	Lu 157 4.8 s 5.7 s	Lu 158 10.6 s	Lu 159 12.3 s	Lu 160 40 s 36.1 s	Lu 161 1.2 m	Lu 162 81 s 93 s	Lu 16 4.1 n
	σ 78	p1.277 p1.261	p1310 p1233	р у 1531; 359; 313 βр 2.3-7.9	8* 7 567; 1491; 1202	р* > 621; 605 68; бо	a 7.390 a 5.564 a 5.655 a 7.390 a → m a → 9	a 5.565 a 5.454 a→15 a→2	5.001 → g = 4.94	f α 4.665; α → g γ 358; 476; 579; 1037	ε; α 4,42 γ 151; 188; 369	* 7 243; 7 243; 577; 395	ε γ 111; 100; 44; 156; 256; 67	* 167: * 167: 825: 632: 326	e y 163; 54; 372
	Yb 173.04	Yb 149 0.7 s	Yb 150 >200 ns	Yb 151 1.6s 1.6s	Yb 152 3.1 s	Yb 153 4.2 s	Yb 154 0.42 s	Yb 155 1.75 s	Yb 156 26.1 s	Yb 157 38.6 s	Yb 158 1.55 m	Yb 159 1.72 m	Yb 160 4.8 m	Yb 161 4.2 m	Yb 10 18.9
	σ 52	β ⁺ βp 2.5-6.0 γ 647*	β ⁺ ?	9 1074; β* 4784; γ 108 520 m g:m; βp βp	β ⁺ γ 482; 142; 317; 949 9	β ⁺ γ 547; 674; 370; g; m βp 2.1-5.7	α 5.33 * γ 133 g	α 5.20; $\alpha \rightarrow g$ $\beta^+; \gamma$ 236; 175; 362; 378 g; m	4.69 7 115	ε; β ⁺ 4.1 α 4.51 γ 231; 242; 340; 165	ε α 4.069 γ 74	ε; β ⁺ 3.4 γ 166, 177; 330; 390,	ε; β ⁺ γ 174; 216; 140	ε β ⁺ γ 78; 600; 631	$\beta^{\epsilon}_{\beta^{+} 7}$ $\gamma 163; 119$
6 ms	Tm 147 0.36 ms 0.56 s	Tm 148 0.7 s	Tm 149 0.9 s	Tm 150	Tm 151 5.2 s 4.2 s	Tm 152	Tm 153 25 s 1.48 s	Tm 154	Tm 155 45 s 21.6 s	Tm 156 83.8 s	Tm 157 3.5 m	Tm 158 20 s ? 4.0 m	Tm 159 9.0 m	Tm 160	Tm 1 37 r
19; 10.94	p 3.111 981	β ⁺ γ 647; 877; 1003; 258	β* γ 796; 159; 417; m; g βρ	8* 7.1579; 8* 474; 80 208; 80 7.171*	β* β ⁺ γ 694; γ 602; 5637 2115; 0 1140; 0	β ⁺ 1.3 γ 806: β ⁺ 673: γ 716. 423: 280 673	4 5.0%	α 5.037 ϵ;β*A.9., ϵ γ 542 - α 4.961 625 γ(135) α → m α → p	4.462 1.66, 323 547 d → m n → g	ε; $β$ ⁺ 6.1 α 4.23; $α$ → g γ 345; 453; 586	€; β ⁺ 3.5 γ 455; 386; 348; 110	y 102; 335 628	ε β ⁺ 2.1 γ 38; 271; 220; 85; 289	ht 6+3.7 1,264; 1,128; 126; 729; 276, 264	е β* 1.8 у 46: 164
5	Er 146 1.7 s	Er 147 25\$ ~258	Er 148 4.6 s	Er 149	Er 150 18.5 s	Er 151 0.57 s 23.5 s	Er 152 10.3 s	Er 153 37.1 s	Er 154 3.73 m	Er 155 5.3 m	Er 156 18.6 m	Er 157 18.65 m	Er 158 2.25 h	Er 159 36 m	Er 11 28.6
	B ⁺ Bp	8* 80 8* 9 683*; 7 96 825* 80	β* γ 1312; 244; 315; 610; g βp	γ 1171; 172; 344 1578 g.m. m. λy631, x190 gp	β ⁺ 2.6 γ 476; 130 9	1099; γ 638; 289 257; β* 667 γ 789; g g m	α 4.80 ε; β ⁺ γ 179 g	α 4.677 ε; γ 351; 398; 188; 378 g; m	e n 4.17 y 27; e	ε; α 4.012 γ 110; 242; 234	ε; β* γ 35; 30 θ	 ε: β⁺ 2.5 γ 53; 391; 121. 	¢ β* 0.8 γ 72; 387	¢ β* 1.1 γ 624; 649 g: m	€ y7;e ⁻
4	Ho 145 2.4 s	Ho 146 3.6 s	Ho 147 5.8 s	Ho 148 9.5 s 2.2 s	Ho 149	Ho 150 24 s 78 s	Ho 151	Ho 152	Ho 153 9.3 m 2.0 m	Ho 154	Ho 155 48 m	Ho 156 7.8 m 9.5 s 58 m	Ho 157 12.6 m	Ho 158	Ho 1 8.3 s
	γ 340; 313; 334; 402 m	β ⁺ γ 683; 925; 674; 237 βp 2.4 – 6.3	γ 189; 884; 487; 1264 m; g	γ 1638; 661; 504 β* βp γ 1678	y 1035; y 1091; 1736; 1073; 372, 1584, 0 9	β* 3.4 γ803. 663; 394; 551 β* γ803; 591; 653	α 4.61 β* 3.5 β* α 4.52. 1.776: γ 527 α → π	0 28 0 a 44 <u>0</u> a 43 <u>0</u> 7 6 <u>14</u> 6 <u>47</u> t <u>038</u> a → m d → g	4:=4.014; p ⁺ 2.8 4:→9 = 3.91 γ 106; γ 296; 366; 637; 102689	1.0 1.0 n.3.72 n.3.93 7.335; 7.335; 412; 412; 477 673	ε β ⁺ 1.8 γ 240; 136	α ¹ - 256; 256 Ι ₁ (52) - 256; - 138	ε β ⁺ 1.2; 1.5 γ 280; 341; 193; 87	1+ 67 β ⁺ 1.3; β ⁺ β ⁺ 2.9, 	ly 205
3 5 s	Dy 144 9.1 s	Dy 145 145 8 6 5	Dy 146 29 s	Dy 147	Dy 148 3.1 m	Dy 149 0.5s 4.2m	Dy 150 7.2 m	Dy 151 17 m	Dy 152 2.4 h	Dy 153 6.29 h	Dy 154 3.0 · 10 ⁶ a	Dy 155 10.0 h	Dy 156 0.056	Dy 157 8.1 h	Dy 1 0.09
177; 3-6	р 7 197; 299; 476; 9 βр 2.6-4.5	β ⁺ γ 458; γ 108 145; m g pp pp pp	γ 280; 241; 385; 2157 9	11385; 1 253; 1725 365; M 679 101;g m 8p.2.51	ε; β ⁺ 1.0 γ 620; 1247 g	1179; γ 101; 299 780; β*;m 1776 γ (787) g;m	ε; β α 4.23 γ 397 g	ε; α 4.07 γ 386; 49; 546; 176 g; m	4 3.63 7 257 9	ε; β* α 3.46 γ81; 214; 100; 254	α 2.87	ε β ⁺ 0.9; 1.1 γ 227	α 33 σ _{0, α} <0.009	e 7 326	α 33 σn. α < 0.0
2 5	Tb 143	Tb 144 425 s / ~1s	Tb 145 30 s ?	Tb 146 23 s 8 s	Tb 147	Tb 148	Tb 149 42m 4.1h	Tb 150 5.8 m 3.67 h	Tb 151 25 s 17.6 h	Tb 152 4.2 m 17.5 h	Tb 153 2.34 d	Tb 154 23h 9.0h 21h	Tb 155 5.32 d	Tb 156	Tb 1 99 i
	1680. 145. 443. 362. 390. 350. 434	μ· 284 β* γ743; γ 743; 1002 1144	7 258 910: 537 m: ş	β ⁺ γ 1579: β ⁺ 7.2 1079: γ 1971; 1417 1579	$\begin{array}{c} \epsilon & \beta^+ \\ \beta^+ & \gamma 1152; \\ \gamma 1398; & 694; \\ 1798 & 140 \end{array}$	β* 2.2 γ784; γ784; 632, 480; 862 1079	δ* α 3.97, α 3.99 β* 3.8 γ 706; γ 352; 165, 265,	γ 638; 3,7 650; a 3,40 827; γ 638; 438 456	13 a 3.41 9380: 287 631 108	160, β ⁺ 2.8., 4, β ⁺ ., γ344; γ344; 586; 411., 271	ε β* γ 212; 170; 110; 102; 83	12248: 11 (37) 347 (7) (23); (7) (23); 1420 (248); (1274) 1227. (540)	¢ y 87; 105; 180; 262	1750 8 ⁺ 1222 8 ⁻ 9 ⁻ 1222	ε γ(54)
1	Gd 142 70.2 s	Gd 143	Gd 144 4.5 m	Gd 145 85 s 23.9 m	Gd 146 48.3 d	Gd 147 38.1 h	Gd 148 74.6 a	Gd 149 9.28 d	Gd 150 1.8 · 10 ⁶ a	Gd 151 120 d	Gd 152 0.20	Gd 153 239.47 d	Gd 154 2.18	Gd 155 14.80	Gd 1 20.4
R. 19	γ 179: 284: 526 9	γ 272; β* 538; γ 250; 799; 205; 658 454	$\begin{array}{c} \beta^{+} \ 3.3\\ \gamma \ 333; \ 2433;\\ 630; \ 347\end{array}$	$\begin{array}{ccc} & \mu & \gamma & \gamma$	β ⁺ γ 155; 116; 115	€; β ⁺ γ 229; 396; 929	α 3.183 σ 14000	ε; α 3.016 γ 150; 299; 347	α2.72	e; α 2.60 γ 154; 243; 175	1.1 · 10 ¹ * a α 2.14; σ 700 σ _{n, α} <0.007	e γ97; 103; 70 σ 20000 σ _{n. α} 0.03	er 60	н 61000 Фл. е 0.00008	ıπ~2.0
D	Eu 141	Eu 142 1.22 m 2.4 s	Eu 143 2.6 m	Eu 144 10.2 s	Eu 145 5.93 d	Eu 146 4.51 d	Eu 147 24.6 d	Eu 148 55.6 d	Eu 149 93.1 d	Eu 150 12.8 hr 36.9 a	Eu 151 47.81	Eu 152 96 m 93 h 1333 a	Eu 153 52.19	Eu 154 46.0 m 8.8 a	Eu 1: 4.761
	1 394 7 284 80.1 385 80.1 385 190	β*4.8 γ 750; 1023; β*7.0 557	y 1107; 1537; 1913; 108; 1805; g	β ⁺ 5.2 γ 1660; 818	β ⁺ 1.7 γ 894; 1659; 654	6 β ⁺ 1.5; 2.1 γ 747; 633; 634	ε; β [*] α 2.91 γ 197; 121; 678	ε; β* α 2.63 γ 550; 630; 611	328; 277	n*/	or 4 + 3150 + 6000	140 (100) 1441: 152 1500 (1100)	σ 300 σn. α. 1Ε-6	e; y 123 1274; 723; 19; 66; 1005 101 d 1500	β ⁻ 0.17; 0 γ 87; 105. σ 3900
9	Sm 140 14.8 m	Sm 141 22.6 m 10.2 m	Sm 142 72.4 m	Sm 143 65 s 8.83 m	Sm 144 3.07	Sm 145 340 d	Sm 146 1.03 · 10 ⁸ a	Sm 147 14.99	Sm 148 11.24	Sm 149 13.82	Sm 150 7,38	Sm 151 93 a	Sm 152 26.75	Sm 153 46.27 h	Sm 1 22.7
1	+; β* 2.4 γ225; 140 9	β*2.9 γ 404; γ 197; 438; 432; 777, 1283; Ιγ (174);6 ⁻¹ 1601	ε β ⁺ 1.0 γ (679)	¹ γ 271 β ⁺ γ (609) ⁴ β ⁺ 2.5 γ 1057; (1515)	or 1.6	ε; γ 61; (492) e σ 280	α 2.455	α 2.235; σ 56 σ _{n, α} 0.0006	α 1.96 σ 2.4	σ 40100 σ _{n, α} 0.031	or 102	β ⁼ 0.1 γ (22); e ⁼ α 15200	at 206	β 0.7; 0.8 γ 103; 70 σ 420	or 7.5
8	Pm 139 4.15 m	Pm 140	Pm 141 20.9 m	Pm 142 40.5 s	Pm 143 265 d	Pm 144 1.0 a	Pm 145 17.7 a	Pm 146 5.53 a	Pm 147 2.62 a	Pm 148	Pm 149 53.1 h	Pm 150 2.7 h	Pm 151 28.4 h	Pm 152	Pm 1 5.3 r
	γ 403; 463; 368 g	8*3.2. 8*5.1. y 1028: y 774; 774; 717; 420. 1409.	y 1223; 886; 194; 1346 9	β ⁺ 3.8 γ 1578	€ no β ⁺ γ 742	ε; no β ⁺ γ 618; 697; 477	ε; α 2.24 γ 72; (67) e ⁻	γ 454; 747; 736 σ 8400	β ⁻ 0.2 γ(121) α84 + 96	1.0	β ⁻ 1.1 γ 286 σ 1400	β 2.3; 3.4 γ 334; 1325; 1166	β 0.8; 1.2 γ 340; 168 σ ~ 150	y 122; 5° 1.9; y 122; 231; 3.3, 841; 245; y 245; 951; 340., 122., 963	β ⁼ 1.7 γ 36; 127; 120
m	Nd 138 5.1 h	Nd 139 5.5 h 29.7 m	Nd 140 3.37 d	Nd 141	Nd 142 27.2	Nd 143 12.2	Nd 144 23.8	Nd 145 8.3	Nd 146 17.2	Nd 147 10.98 d	Nd 148 5.7	Nd 149 1.73 h	Nd 150 5.6	Nd 151 12.4 m	Nd 1: 11.4
	γ326; (200) g	12 144; 738. р* 1.8 962; 708 у 405. у (231); е* 1074	e no y	β [*] 0.8 γ (1127: β [*] γ (971) 1147)	er 19	σ 330 σn: α 0.017	α 1.83 σ 3.6	α 47 σn. α 0.000012	1.5	γ91; 531 e ⁻ σ 440	or 2.4	β ⁻ 1.4; 1.8 γ211; 114; 270	2β ⁻ σ 1.0	β 1.2; 2.3 γ 117; 256; 1181	β 0.9; 1.2 γ 279; 250 9
	Pr 137 76.6 m	Pr 138 2.02 h 1.44 m	Pr 139 4.5 h	Pr 140 3.4 m	Pr 141 100	Pr 142	Pr 143 13.57 d	Pr 144 7.2 m 17.3 m	Pr 145 5.98 h	Pr 146 24.0 m	Pr 147 13.6 m	Pr 148	Pr 149 2.25 m	Pr 150	Pr 15 18.9
	e; B ⁺ 1.7	790 34	«: B ⁺ 1.1		the constant	17.2.2.	8-0.9	ly59	the second second		8-21-27	β ⁻ β ⁻ 4.7;	0-20	p ⁻ p ⁻ 5.7	0-04

27. 3. 2020

Rádioaktívne rozpady

Uzavreté vrstvy Z = 50 a N = 50

Istým unikátom je oblasť α rozpadov v okolí ¹⁰⁰Sn. Kvôli stabilizačnému efektu ¹⁰⁰Sn, narastajú Q hodnoty α rozpadov izotopov, ktoré vedú do okolia tohto izotopu a α premena dokáže úspešne konkurovať či už β +/EC premene, alebo emisii protónu. Vzhľadom na rýchlosť tejto alfa premeny zvykneme hovoriť o tzv. super-dovolenom α rozpade

						1	σ 1.3	βp α 3.410	8 ⁺ 8p	Bp 9	Bp y 364*;95;102	γ 52; 65; 93 g	β* βp 2.0-6.0
0.9469					55	Cs 132.90545	Cs 112 500 μs	Cs 113 17 μs	Cs 114 0.57 s 8 ⁺ ; a 3.239 7450; 698; 618. 8p 1.7-70	Cs 115 1.4 s	Cs 116 3.5 s 0.7 s p*4.5 -5. r396,504. pr22-65 p*105.	Cs 117 6.5 s 8.4 s p ⁺ 7.206, 206 160	Cs 11 17 8 8* 8* 73 9* 84 7337; 84
68				54	Xe 131.293 σ25	Xe 110 105 ms	Xe 111 0.95 s α 3.589; 3.500 χ 89	Xe 112 2.7 s α 3.216	βα 70-125 Xe 113 2.8 s β ⁺ : α 2.985 γ 121; 689 βp 2-7 βα 7-10	βρ Xe 114 10 s β ⁺ γ 309; 162; 104; 440	μ 134 Xe 115 18 s ε: β ⁺ βp 2.4-5.2 γ709 Ba	μ* 222 Xe 116 57 s β ⁺ 3.3 γ 104; 311; 248.	470. 100 Xe 11 61 s β* 5.3 γ221; 519; 117; 296 80
		53	Ι 126.90447 σ 6.2		I 108 36 ms α 3.947	I 109 100 μs p 0.813	<mark>Ι 110</mark> 0.65 s ^{β*} α 3.444 βp 25-6.0 βα 7-12	I 111 2.5 s β ⁺ a 3.152 γ 341; 117; 321; 266 321; 266	1 112 3.42 s β ⁺ : α 2.860 7 689; 787; 798; 1143; βp 2.0-6.8 βp 6-12	I 113 5.9 s ^{β+} ^α 2.610 ^γ 463; 622; 351; 567	I 114 625 2.15 h-107	I 115 1.3 m	I 116 2.9 s β ⁺ 6.7 γ 679; 540
	52	Τe 127.60 σ 4.2	Te 105 0.70 μs α 4.72	Te 106 70 μs	Te 107 3.1 ms • 3.862 • (168)	Te 108 2.1 s ^{β+} α 3.317 βp 2-3	Te 109 4.6 s β ⁺ : γ752; 832; 402 βp 3.3; 3.7 α 3.107	Te 110 18.6 s ^{β†} α 2.624 γ 895; 606; 219; 108	Te 111 26.2 s β ⁺ γ 851; 881; 487; 1147; 1269 βρ 2.82; 2.66	Te 112 2.0 m ^{\$†} ^{373; 296;} ⁴¹⁹	Te 113 1.6 m β ⁺ 4.7 γ814; 1018; 1181; 645	Te 114 15.2 m ε; β* γ 90; 1897; 727; 244; 1417	Te 11 6.7 m 5. 1 μ*1 1, * 770 770 132 1072. 109
51	Sb 121.760 σ 5.2	Sb 103 >1.5 μs	Sb 104 0.44 s	Sb 105 1.12 s	Sb 106 1.1 s ^{β+} γ1207; 811	Sb 107 4.6 s ^{β+} γ 1280; 819; 151; 704	Sb 108 7.6 s β ⁺ γ 1206; 905; 1599; 1273	Sb 109 16.7 s β ⁺ 4.4, 5.4 γ 925, 1062; 865; 1496	Sb 110 24.0 s ^{8+6.9} 71212.985; 1243; 827	Sb 111 75 s ^{8+3.3} ^{7 154; 489;} 1033	Sb 112 53.5 s	Sb 113 6.67 m β ⁺ 2.4; 2.5 γ 498; 332 g; m	Sb 11 3.5 m
Sn 100 0.94 s ^{β+3.4}	Sn 101 3 s ^{β*} ^{βр 2-3.5}	Sn 102 3.8 s ^{β⁺ 3.2; 3.5 γ 320; 94; 69; 1063}	Sn 103 7.0 s ^{β+} γ 1356; 314; 1397; 1078 βρ; g; m	Sn 104 20.8 s β* 2.4 γ 133; 913; 401; 1407 m; g	Sn 105 34 s ^{β+} γ 1282; 1466; 309; g; m βρ 1-3	Sn 106 2.1 m ⁶ β ⁺ 12 γ387: 253: 477; m	Sn 107 2.9 m β ⁺ γ1129; 1542; 1001 m; g	Sn 108 10.3 m «; β* 0.4 y 396; 273; 169; 669 m	Sn 109 18.0 m ε; β* 1.6 γ 1099; 1321; 331 g; m	Sn 110 4.11 h	Sn 111 35.3 m «: #† 1.5 71153: 1915; 782; 1610 9	Sn 112 0.97	Sn 11. 21.4 m 111 hy (79) + e* y 22 m o
27. 3.	2020	1- 101	1- 100	1 100	Rád	ioaktívne	e rozpac	ly				15/	10

Nilsson diagram najťažšie prvky

Deformované uzavreté vrstvy

Q hodnota alfa rozpadu môže indikovať prítomnosť tzv. deformovaných uzavretých vrstiev. Tento vplyv je evidentný napr. pre N=152 neutrónov. Dáta z oblasti superťažkých prvkov však nazančujú aj výrazný vplyv pre N=162 neutrónov. 27. 3. 2020 Rádioaktívne rozpady 17/10

Parita v α rozpade

- Samotná α častica má dva protóny a dva neutróny, všetky na 1s, takže samotná α častica má celkový spin 0.
- Ak α rozpad prebieha medzi dvomi stavmi uhlovými momentami I_i a I_f emitovaná alfa častica odnáša uhlový moment hybnosti súvisiaci iba zo zmenou uhlového momentu jara od $|I_i - I_f|$ po $|I_i + I_f|$.
- Vlnová funkcia α rozpadu Y_{lm} závisí od od $(-1)^l$. V dôsledku zákona zachovania parity sú povolené iba alfa rozpady pre prechody s l párnym pre $\pi_i = \pi_f$ a l nepárnym pre $\pi_i \neq \pi_f$

Alfa rozpad bez odstredivého potenciálu

Vieme, že v prípade zmeny uhlového momentu hybnosti dochádza k dodatočnému zvýšeniu bariéry, ktorú musí alfa častica prekonať.

$$V(r) = \frac{2(Z-2)e^2}{4\pi\varepsilon_0 r} \to V(r) = \frac{2(Z-2)e^2}{4\pi\varepsilon_0 r} + \frac{\hbar^2 l(l+1)}{2\mu r^2}$$

Preto je alfa rozpad veľmi citlivý na štruktúru obsadzovaných stavov a v prípade párno párnych jadiervidíme zvyčajne iba dominantné prechody medzi dvoma stavmi.

Odstredivý potenciál

20/10

Alfa rozpady s rôznou energiou

 Pravdepodobnosť obsadenia finálneho stavu je vždy určitým kompromisom medzi
 minimalizovaním zmeny štruktúry a maximálnou energiou uvoľnenou pri alfa rozpade.
 Alfa rozpad je citlivý nástroj na štúdium jadrovej štruktúry, keď z
 pravdepodobnosti prechodu

dokážeme určiť zmenu v konfigurácii materského a dcérskeho jadra.

F.P. Hessberger et al. Eur. Phys. Journal A 29, 165 (2006)

Redukovaná šírka rozpadu

- Problém: Intenzita prechodu je závisla od energie (viď. Geiger-Nutal zákon)
- Riešenie: Využitie redukovanej šírky rozpadu pravdepodobnosť prechodu očistená o energetickú závislosť.
 Vyššia redukovaná šírka, zodpovedá rýchlejšiemu rozpadu.

$$\delta_{\alpha}^{2} = \frac{\lambda\hbar}{P} \qquad P \approx e^{-G} = \exp\left\{-2\frac{\sqrt{2m_{\alpha}}}{\hbar}\int_{R}^{b}\sqrt{[V(r) - E_{\alpha}]}dr\right\}$$
$$V(r) = -1100\exp\left\{-\frac{r - 1.17A^{1/3}}{0.574}\right\}MeV$$

J.O.Rasmussen, Phys. Rev. 113 (1959) 1593

 Riešenia sú zvyčajne založené na numerických výpočtoch so zvolenou výškou bariéry. 27. 3. 2020 Rádioaktívne rozpady 22/10

Hindrance factor

Na určenie vplyvu štrukturálnej zmeny pri alfa rozpade sa využíva tzv. faktor potlačenia (hindrance factor). Čím je faktor potlačenia vyšší, tým je alfa rozpad pomalší v porovnaní alfa rozpadom bez štrukturálnej zmeny (t.j. s nulovým odstredivým potenciálom a bez zmeny parity).

- Typicky alfa rozpady bez zmeny štruktúry majú HF < 4.
- V prípade zmeny spinu možno očakávať $HF \approx 10 100$.
- Ak sa mení aj parita tak môže byť $HF \approx 1000$ (v závislosti od zmeny uhlového momentu hybnosti).

Dodatočné zvýšenie HF je však možné aj napr. v prípade zmeny deformácie jadra (rozpad na stavy s rovnakým spinom a paritou, ale rôznou deformáciou).

27. 3. 2020

Vyhodnotenie faktoru potlačenia

Potlačenie pravdepodobnosti alfa premeny pri štrukturálnych zmenách možno je pomerom skutočnej (experimentálnej) pravdepodobnosti rozpadu a pravdepodobnosti očakávanej pre alfa rozpad medzi dvomi stavmi s rovnakou konfiguráciou.

Možnosť vyjadrenia cez pomer redukovaných šírok rozpadu pre párno-párne jadrá (t.j. rozpad medzi dvomi 0+ stavmi)

Možnosť vyjadrenia pomerom parciálnych polčasov rozpadov pre očakávaný rozpad medzi dvomi 0+ stavmi s danou energiou a experimentálnym parciálnym polčasom rozpadu. Pre očakávaný "teoretický" parciálny polčas sa využíva semiempirický prístup vychádzajúci z G-N zákona. (viď napr. D.N.Poenaru et al. J. Physique 41 (1980) 589)

 $HF = \frac{\delta_{even-even}^2}{\delta_{exp}^2}$

Protónová emisia

Proces prebiehajúci v blízkosti protónového driplinu Objavený až v 1981 na separátore SHIP v GSI Darmstadt

Z. Phys. A - Atoms and Nuclei 305, 111-123 (1982)

Proton Radioactivity of ¹⁵¹Lu

S. Hofmann, W. Reisdorf, G. Münzenberg, F.P. Heßberger, J.R.H. Schneider, and P. Armbruster Gesellschaft für Schwerionenforschung mbH, Darmstadt, Federal Republic of Germany

Received December 2, 1981

A (1231 ± 3) keV proton activity has been observed in the fusion reaction ⁵⁸Ni $+ {}^{96}$ Ru $\rightarrow {}^{154}$ Hf*. The production cross section peaks at 50 MeV of excitation energy with a value of about 70 µb. No coincidences with annihilation radiation or with K X-rays could be observed. The activity is assigned to direct proton decay of the new isotope 151 Lu. The measured half life is (85 ± 10) ms.

Energie protónovej emisie

Typická energia emitovaného protónu cca 1 – 2 MeV

Protónová emisia ¹⁸⁵Bi

27. 3. 2020

Rádioaktívne rozpady

27/10

Dvoj protónová emisia

V roku 2004 publikované výsledky ohľadom emisie dvoch protónov v jadre ⁴⁵Fe

Nuclear Physics A734 (2004) 303-310

www.elsevier.com/locate/npe

Two-proton radioactivity - a curiosity of Nature?

B. Blank^{a b}, J. Giovinazzo^b, M. Pfützner^c, Y. Blumenfeld^d, T. Zerguerras^d

^aPhysics Division, Argonne National Laboratory, Argonne, IL 60439, USA

^bCentre d'études nucléaires de Bordeaux-Gradignan Le Haut-Vigneau, F-33175 Gradignan, France

^cInstitute of Experimental Physics, Warsaw University Pl-00-681 Warsaw, Poland

^dInstitut de physique nucléaire, F-91406 Orsay Cedex, France

In the present paper, we describe recent results on two-proton emission studies. In the first part, new results on two proton emission from excited states in ¹⁷Ne are presented. In these complete kinematics measurements performed at the SPEG facility of GANIL, the angle between the two protons has been measured evidencing a ²He emission pattern. In a second part, recent results on the two-proton radioactivity of ⁴⁵Fe from GANIL and GSI are presented, which show the first evidence of this new radioactivity.

BETA PREMENA

27. 3. 2020

Rádioaktívne rozpady

30/10

Povolené rozpady

 $\Delta I = 0,1 \text{ a } \Delta \pi = \text{nie}$ V prípade Fermiho rozpadu je povolené len $\Delta I = 0$. Ak sa $I_i = I_f = 0$ tak sa realizuje iba Fermiho prechod.

Rádioaktívne rozpady

Zakázané rozpady

- first-forbidden $\Delta I = 0, 1, 2 a \Delta \pi = ano$ ${}^{17}N \rightarrow {}^{17}O (1/2^- \rightarrow 5/2^+)$
- Second-forbidden $\Delta I = 2, 3 \text{ a } \Delta \pi = \text{nie}$ ²²Na \rightarrow ²²Ne (3⁺ \rightarrow 0⁺)
- Third-forbidden $\Delta I = 3$, 4 a $\Delta \pi = ano$ ⁸⁷Rb \rightarrow ⁸⁷Sr (3/2⁻ \rightarrow 9/2⁺) Fourth-fobidden $\Delta I = 4$, 5 a $\Delta \pi = nie$
- $^{115}In \rightarrow ^{115}Sn (9/2^{+} \rightarrow 1/2^{+})$

Pravdepodobnoť prechodu

- Pravdepodobnosť vyjadruje hodnota log ft pričom log ft = log f + log t
- $\log t = \log_{10} T_{1/2}$
- log f logaritmus fermiho integrálu

$$f(Z', E_0) = \frac{1}{(m_e c)^2 (m_e c^2)} \int_0^{p_{\max}} F(Z', p) p^2 (E_0 - E_e)^2 dp$$

Fermi integral

Odhad log ft hodnot

ENSDF analysis program LOGFT – both Windows & Linux distribution http://www.nndc.bnl.gov/nndcscr/ensdf_pgm/analysis/logft/

LOGFT Web interface at NNDC http://www.nndc.bnl.gov/logft/

Calculate

Help

Systematika log ft

luclear Data Sheets 84, 487 (1998) rticle No. DS980015

27.3.2020

Rádioaktívne rozpady

36/10

Systematika log ft

Experimentálne vyhodnotenie pravdepodobnosti

Jednou z klasických možností je využitie gama spektroskopie – identifikácia stavov obsadzovaných beta premenou. Požiadavky – vysoká účinnosť a rozlíšenie gama detektorov.

Pre vysoké Q_{β} hodnoty komplexná a náročná analýza.

Rádioaktívne rozpady

38/10

Pandemonium effect

V prípade vysokých Q_β môže "zmiznúť" informácia o obsadzovaní vysokoenergetických hladín, ktoré sa môžu de-excitovať vysoko-enegetickými gama prechodmi.

Pandemonium centrum pekla podľa epickej básne Paradise lost (John Milton) zo 17 storočia. Miesto, kde pretrváva chaos a úplný zmätok.

Riešením je TAS spektroskopia (Total Absorption Spectropmetry) – obetujúc rozlíšenie detektorov získame vyššiu účinnosť napr. využitím scintilačných detektorov. Účinnosť efektívne 100%.

P. Moller et al. At. Data and Nucl. Data table 59 (1995) 185 (FRDM + Yukawa single part. potential for microsc. correction)

Rádioaktívne rozpady

Decay oscilations

Fig. 4. Number of EC-decays of H-like ¹⁴²Pm ions per 0.64 seconds as a function of the time after the injection into the ring. The solid line shows the exponential decay fit according to Eq. (1).

Fig. 5. A zoom to the first 33 s after injection of the ¹⁴²Pm data presented in Fig. 4. The solid line represents the exponential decay fit according to Eq. (1). The dashed line shows the fit according to Eq. (2). Both fits were done until 33 s after injection and are marked with an asterisk in Table 2. The inset shows the FFT spectrum obtained from these data. A clear FFT peak is observed at about 0.14 Hz (laboratory frame). Its reduced resolution as compared to the corresponding FFT in Fig. 3 is explained by the smaller number of points used.

Rádioaktívne rozpady

EC decay oscillations... again opened discussion

Physics Letters B 664 (2008) 162-168

	Contents lists available at ScienceDirect	PHYSICS LETTERS B
575) M	Physics Letters B	
ELSEVIER	www.elsevier.com/locate/physletb	Lance and Second Annual Income Annual

Tieto oscilácie boli identifikované pre tzv. "H-like" jadrá ¹⁴⁰Pr⁵⁸⁺, ¹⁴²Pr⁶⁰⁺, ¹²²I⁵²⁺

Observation of non-exponential orbital electron capture decays of hydrogen-like ¹⁴⁰Pr and ¹⁴²Pm ions

Yu.A. Litvinov^{a,b,*}, F. Bosch^a, N. Winckler^{a,b}, D. Boutin^b, H.G. Essel^a, T. Faestermann^c, H. Geissel^{a,b}, S. Hess^a, P. Kienle^{c,d}, R. Knöbel^{a,b}, C. Kozhuharov^a, J. Kurcewicz^a, L. Maier^c, K. Beckert^a, P. Beller^A, C. Brandau^a, L. Chen^b, C. Dimopoulou^a, B. Fabian^b, A. Fragner^d, E. Haettner^b, M. Hausmann^e, S.A. Litvinov^{a,b}, M. Mazzocco^{a,f}, F. Montes^e, A. Musumarra^{g,h}, C. Nociforo^a, F. Nolden^a, W. Plaß^b, A. Prochazka^a, R. Reda^d, R. Reuschl^a, C. Scheidenberger^{a,b}, M. Steck^a, T. Stöhlker^{a,i}, S. Torilov^j, M. Trassinelli^a, B. Sun^{a,k}, H. Weick^a, M. Winkler^a

^a Gesellschaft für Schwerionenforschung GSI, 64291 Darmstadt, Germany

- ^b Justus-Liebig Universität, 35392 Gießen, Germany
- ^c Technische Universität München, 85748 Garching, Germany
- ^d Stefan Meyer Institut für subatomare Physik, 1090 Vienna, Austria
- e Michigan State University, East Lansing, MI 48824, USA
- ^f Dipartimento di Fisica, INFN, 135131 Padova, Italy
- ⁸ INFN-Laboratori Nazionali del Sud, 195123 Catania, Italy
- ^h Universitá di Catania, 195123 Catania, Italy
- Ruprecht-Karls Universität Heidelberg, 69120 Heidelberg, Germany
- St. Petersburg State University, 198504 St. Petersburg, Russia
- ^k Peking University, Beijing 100871, China

ARTICLE INFO

Article history: Received 17 January 2008

Received in revised form 26 February 2008 Accepted 11 April 2008 Available online 8 May 2008 Editor: V. Metag

ABSTRACT

We report on time-modulated two-body weak decays observed in the orbital electron capture of hydrogen-like ¹⁴⁰Pr⁵⁹⁺ and ¹⁴²Pm⁶⁰⁺ ions coasting in an ion storage ring. Using non-destructive single ion, time-resolved Schottky mass spectrometry we found that the expected exponential decay is modulated in time with a modulation period of about 7 seconds for both systems. Tentatively this observation is attributed to the coherent superposition of finite mass eigenstates of the electron neutrinos from the weak decay into a two-body final state.

© 2008 Published by Elsevier B.V. Fig. 1. Decay schemes of neutral ¹⁴⁰Pr (upper panel) and ¹⁴²Pm (lower panel) atoms [14].

Rádioaktívne rozpady

H-like nuclei – only one electron in the shell